
PROGRAMMING AND CODING THE IBM 709-7090-7094 COMPUTERS

COM~lUJIElR<S

BELL TELEPHONE LABORATORIES

MURRAY HILL, NEW JERSEY

JOHN WILEY AND SONS, INC.

NEW YORK, LONDON AND SYDNEY

Copyright © 1963 by John Wiley & Sons, Inc.

All Rights Reserved
This book or any part thereof
must not be reproduced in any form
without the written permission of the publisher

Printed in the United States of America

PREFACE

The purpose of this booklet is to explain the differ
ences that exist between the hypothetical DELTA 63 (in
PROGRAMMING AND CODING DIGITAL COMPUTERS) and the
IBM 709-7090-7094 digital computers. It is deemed impor
tant that the reader "go on" a computer early in his
studies. This booklet, used in conjunction with the book,
attempts to permit him to do just that.

The book itself is self-contained; it stands by
itself and makes no references to this booklet. The
booklet, however, is tied intimately to the book. There
are many references to the latter, indicated by the speci
fic mention of pages.

The plan for the joint use of book and booklet is as
follows. The reader follows the book with reference to
the workplan of this booklet (placed at the start of this
booklet). The workplan indicates when material here is to
supplement, modify, or replace material in the book. The
reader then makes appropriate references as noted.
Material here follows the plan of the book and is placed
in proper sequence. In general, the book material in
small ty)e, which is of a specific nature (specific to the
DELTA 63 , is supplemented, modified or replaced.

The effect of this joint usage is to yield a textbook
that is of general structure, illustrated by coding for
the IBM 709-7090-7094 computers. Characteristics of these
computers, their repertoires of instructions, and examples
of their coding appear in this booklet. A number of
additional examples are included to reflect the special
features and instructions of the IBM 709-7090-7094 computers.

Computer manuals, published by IBM on the three
computers, should also be used.

Part I of the book is general in its approach and so
needs no modification here. Parts II and III, however, are
largely specific and so are well represented in this
booklet.

An index to the 7090 instructions appearing in this
booklet follows the regular index.

Philip M. Sherman

v

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

TABLE OF CONTENTS

Workplan

Basic Operations

Symbolic Coding

Program Loops

Index Registers

Sequencing in Memory

Subroutines

Input-Output Operations

Program Planning

Numerical Problems

Algebraic Languages

Nonnumerical Problems

Data Processing

Macro-instructions

Interpreters and Simulation

Program Debugging and Testing

Index

Index to instructions

vii

ix

1

14

18

28

45

51

61

64

72

74

'75

90

97

122

126

133

136

WORKPLAN

This workplan indicates where the material in the
booklet is to be used to supplement, modify, or replace
the corresponding material in the book, PROGRAMMING AND
CODING DIGITAL COMPUTERS. (S, M, and R indicate .§..upple
ment, modify, and replace. These characters appear at
each section within the booklet.)

-Pages

R 84.4 - 85.5
R 85.8 - 86.3
R 86.7 - 87.2
R 87.4 - 87.8
S At 87.10
R 88.4 - 89.1
R 89.5 - 91.1
R 92.1 - 92.6
R 93.3 - 93.6
M 93.6 - 94.4
R 94.5 - 97.10

R 102.7 - 103.1
S At 104.4
R 106.8 - 107.1
M 107.4 - 109.7
S At 109.10
R 110.2 - 110.6
R 111.5 - 112.1

Material

CHAPTER 5

General structure of 7090
Addition and subtraction: instructions
Example 5.1
Example 5.2
Comments on overflow

Mult. and division: instructions

Examples 5.3,5.4,5.5
Example 5.6
Transfer instructions

Comments on transfers

Examples 5.7,5.8,5.9

CHAPTER 6

Example 6.1
What FAP is
Instruction format
Pseudo-operations
Qualifiers
Example 6.2
Example 6.3

ix

Chapter 5
BASIC OPERATIONS

(R)------------------(84.4 - 85.5*)-----------------------

GENERAL STRUCTURE OF 709/7090/7094 COMPUTERS
The three computers are very similar, having the same

memory capacity and essentially the same special registers
and instructions. The 709 is slower than the 7090 by a
factor of approximately 5; the 7094 has a few additional
features and instructions. The three will be referred to
by reference to the 7090.**

The IBM 7090 computer has 32,768 36-bit words, usually
addressed octally, 00000 through 77777. Bits in memory
words are labeled S, 1, 2, ... , 35. The S-bit holds the
sign, so that a signed 35-bit number can be stored in each
word; a positive sign is stored as a 0 and a negative sign
is stored as a 1. .

Magnetic tapes are connected to the computer for
input-output purposes. Information may be read from
magnetic tape or punched cards and may be written on tape,
punched 'on cards, or printed on paper. Data transmitted
between memory and an input-output unit must pass through
a data channel.

Each instruction is placed in one word in memory
Most instructions have the format shown in Figure 5.1.
Bits Sand 1 through 11, the operation field, hold the
operation code. Bits 21 through 35, the address field,
hold the operand address of the instruction. The octal
representation of the instruction shown in Figure 5.1 is
+050000015056. The operation code is +05008 and the
operand address is 150568 ,

*Pages given at heads of sections indicate the pages in
the text replaced by the material here. The digit after
the decimal point indicates position on the page; thus
"84.4" indicates a point about 4/10 down the page.

**Details on the 7090 and 7094 computers are available in
these IBM Manuals: "Reference Manual - IBM 7090 Data
Processing System" (Form A22-6528-4, 1962) and "Reference
Manual - IBM 7094 Data Processing System" (Form A22-6703,
1962) .

1

Pages

R 120.1 - 120.4
R 120.8 - 122.3
R 123.7 - 124.9
R 125.6 - 126.4
S At 129.2
S At 129.4
R 131.7 - 132.7
R 133.1 - 134.6
R 135.2 - 136.6

R 141.8 - 142.7
R 143.1 - 143.9
M 143.9 - 144.3
M 144.4 - 144.10
R 145.6 - 146.3
R 146.4 - 146.8
R 147.2 - 147.8
R 148.4 - 152.7
R 153.1 - 153.3
S At 154.7
R 155.0 - 156.3
R 156.7 - 157.8
M 159.4 - 161.5
R 162.4 - 164.6

Material

CHAPTER 7

Example 7.1
Example 7.2
Example 7.3
Example 7.4
Informa tion on tape

Input-output equipment

Example 7.5
Examples 7.6,7.7
Example 7.8

CHAPTER 8

Index Registers

Indexing instructions
Levels of addressing
The variable field

Example 8.1
Example 8.2
Example 8.3, indexing instructions
Examples 8.4,8.5,8.6
Time-space balance example
Index register pointers

Indexing instructions, Ex. 8.7
Example 8.8
Indirect addressing
Example 8.9

x

Pages

M 168.2 - 168.6
R 168.7 - 169.8
S At 170.1
R 170.5 - 171.7
R 172.7 - 174.3
R 176.4 - 178.7

R 182.10 - 183.4
R 185.4 - 185.9
S At 186.4
R 186.5 - 186.7
R 188.1 - 188.5
R 189.7 - 190.2
R 190.7 - 191.6
R 191.7 - 192.4
R 192.6 - 192.8
R 193.0 - 195.3
R 196.4 - 196.5

S At 206.8
R 208.8 - 209.10
R 210.7 - 211.1
M 211.2 - 213.2

Material

CHAPTER 9

Compare instruction

Example 9.1
Test instructions

Examples 9.2,9.3
Examples 9.4,9.5
Example 9.6

CHAPTER 10

Example 10.1
Example 10.2
Macro-instructions

Macro-instruction example

TSX instruction and linkages

Transfer of information
Example 10.3
Example 10.4
Subroutine call example

Examples 10.5,10.6,10.7
Multiple returns

CHAPTER 11

Correction cards

BCD codes
BCD pseudo-operation
Input-output subroutines

xi

Pages

R 235.1 - 235.4
R 235.8 - 236.3
R 240.3 - 241.6
R 243.1 - 244.10
R 245.3 - 246.9
R 247.2 - 247.9

R 254.8 - 255.8
M 255.8 - 256.4

R 267.4 - 267.7

S At 296.5
R 297.4 - 298.10
M 299.3 - 299.8
R 299.8 - 300.2
R 301.2 - 301.7
S At 302.1
R 307.7 - 311.7
R 316.1 - 317.3
R 320.1 - 320.4
R 320.6 - 321.5
S At 322.0
R 322.1 - 322.7

Material

CHAPTER 12

Instruction execution times
Example 12.2
Example 12.3
Shifting and masking
Example 12.4
Example 12.5

CHAPTER 13

Floating pt. oper'ns and instructions
Floating-point examples

CHAPTER 14

Compiler coding example

CHAPTER 15

Logical instructions

Example 15.1
Packing binary information

Example 15.2
Example 15.3
ERA, PBT, and the sense indicators
Example 15.4
Word formats, Example 15.5
Example 15.6
Example 15.7
PAC instruction

Example 15.8

xii

Pages

S At 331.10
R 332.2 - 333.10
S At 334.2
R 338.7 - 340.2
M 340.2 - 340.5
R 341.1 - 341.10

S At 348.10

R 349.0 - 349.9
R 350.1 - 350.3
S At 350.4
R 351.4 - 351.10
R 352.4 - 352.9
R 353.0 - 354.7
M 355.4 - 355.9
R 356.0 - 356.4
R 356.6 - 357.8
R 357.9 - 358.3
R 358.4 - 358.10
M 359.0 - 359.3
R 359.3 - 359.7
S At 359.10
R 360.3 - 361.3
R 361.4 - 362.4
M 363.7 - 364.5
R 365.3 - 366.4
R 366.8 - 367.9
R 368.'4 - 370.7

Material

CHAPTER 16

Convert instruction
Examples 16.1, 16.2, 16.3
CRQ instruction; Example 16.3A
TLQ instruction; Example 16.4
Comments on sorting
Example 16.5

CHAPTER 17

Comments on pseudo-operations
Example 17.1
Macro-instruction expansion
PMC pseudo-operation
Example 17.2
IFF pseudo-operation
Example 17.3
IFF variations
Example 17.4
IRP pseudo-operation; Ex. 17.4, cont'd
Example 17.5
Example 17.5, cont'd
Comment on created symbols
Example 17.6
Created-symbol IFF
RMT pseudo-operation; Ex. 17~7

Example 17.8
Comments on G¢ pseudo-operation
Example 17.10
Example 17.11
Example 17.12

xiii.

Pages

R 371.2 - 371.8
R 372.4 - 373.2
R 373.6 - 374.8

Ma teria 1

Simulation macro-instructions
Example 17.13
Example 17.14

R 375.3 - 376.2 Example 17.15
R 376.5 - 378.4 Example 17.16

R 387.5 - 391.2
M 391.7 - 394.8
R 395.3 - 395.10

S At 402.3
R 402.4 - 403.8
R 403.9 - 404.2
R 406.4 - 406.7
R 409.4 - 409.10
R 413.1 - 413.9
R 414.3 - 415.3

CHAPTER 18

Example 18.2
Comments on generality of material
Example 18.4

CHAPTER 19

Assembler aids

Example 19.1
Example 19.2
Example 19.3
Trap feature (STR)

Examples 19.4, 19.5
Example 19.6

xiv

2

Sl 11 21 35
000101000000000000001101000101110
'--.-..,r-,/ '--~

operation code address

Figure 5.1. IBM 7090 instruction word.

Integers and fixed-point numbers each may occupy _
35 bits, filling bits 1-35; the S-bi t is used for ~~
sign. Floating-point numbers each also occupy (~ word;
one number is shown in Figure 5.2. Bits 1 tJYrough 8
hold the characteristic, and bits 9 through 35 hold the
absolute value of the fraction. Characteristics are
formed by adding 2008 (128) to the powers of 2 in floating
point form. The binary point is assumed to be .immediately
to the left of the fraction. The octal form of the number
shown in Figure 5.2 is -20622050400, which is the number
-18.0790.

[
implied location of
bina ry point

l~~~lOOlOOOOlOlO~OOooooooog

Characteristic Fraction

Figure 5.2. IBM 7090 floating-point number.

The accumulator register (AC) contains 38 bits,
labeled S, Q, P, and 1 through 35. The Q and P bits are
considered to be to the left of bit 1 and provide for
overflow in the AC. The multiplier-quotient register (MQ)
contains 36 bits, numbered as in a memory word. During the
execution of special instructions, including multiplication
and division, the MQ is used as the right-hand extension
of the AC.

(R)-------------------(85.8 - 86.3)---------------------·--

ADDITION AND SUBTRACTION
Following are several of the arithmetic and data

moving instructions of the 7090. In these descriptions,
the following sequence of information is given: The

3

instruction name in full, a 3-letter mnemonic abbreviation
for the instruction, the operation code, the execution
time in machine cycles, and the description. A machine
cycle is 12, 2.18) and 2 microseconds for the 709, 7090
and 7094 computers, respectively. The Y that is mentioned
refers to a memory location and represents an operand
address. All registers affected by the instruction are
mentioned.

CLEAR AND ADD (CIA Y) (+0500); 2 cycles. The C(Y)
replaces the C(AC)S 1-3S'* Positions P and Q of the AC are
set to zero. The C(Y) is unchanged. '

STORE (STO Y) (+0601); 2 cycles. The C(AC)S 1-35
replaces the C(Y). The C(AC) is unchanged. '

ADD (ADD Y) (+0400); 2 cycles. The C(Y) is added
algebraically to the C(AC) and the sum is placed in the AC.
The C(Y) is unchanged. '

SUBTRACT (SUB Y) (+0402); 2 cycles. The C(Y) is
subtracted algebraically from the C(AC) and the difference
is placed in the AC. The C(Y) 1s unchanged.

HALT AND TRANSFER (HTR Y) (+0000); 2 cycles. The
computer stops upon execution of this instruction. (If
the start key on the console is pushed, the computer takes
its next instruction from location Y and proceeds from
there.)

As the result of an addition or subtraction, if the
C (AC) is zero, the sign of the 'AC is unchanged. Thus if '
the C(AC) is -60 and the C(Y) is +60, then after the
addition of the C(Y) theC(AC) = -0.

(R)-----------------~-(86.7 - 87.2)----------~------------

Example 5.1 Find the s~m of 56, ... 45, 23, and -39.
These numbers are located in sequence, beginning at loca
tion 00300.' Placie the sum in location 00304.

Since addi tion is pe rformed in the AC, the firs t
number must be loaded into the AC, and all other numbers
must then be added to the first. Finally, the sum must
be stored in 00304. The program is written to begin at
location 00100 and end at location 00105. Location 00304
is set aside for the sum.

*Subscripts on an expression of the form C(X), where X is
a word or register, refer to the only bits involved; bits
notmentloned are not involved.

4

location Contents Remarks

00100 +0500 000 00300 load 56 into the AC
00101 +0400 000 00301 Add -45 to AC, giving 11
00102 +0400 000 00302 Add 23, giving 34
00103 +0400 000 00303 Add -39, giving -5
00104 +0601 000 00304 Store sum in 00304
00105 +0000 000 00000 Halt

00300 +000000000070 56 (Numbers are listed
00301 -000000000055 -45 at left in octal)
00302 +000000000027 23
00303 -000000000047 -39
00304 +000000000000 For sum

(R)-------------------(87.4 - 87.8)-----------------------

Example 5.2 Find the value of m, where

m = a + b - c + d

The quantities a, b, c, and d are stored in sequence,
starting at location 00675. Place the sum in loca
tion 00674.

The structure of this program is similar to the one
in Example 5.1, except that one quantity (c) is subtracted
from the C (AC) . The program is wri tten to s ta rt at loca-·
tion 00020. location 00674 is set aside for the sum.

location Contents Remarks

00020 +0500 000 00675 load a into AC
00021 +0400 000 00676 Add b, forming a + b
00022 +0402 000 00677 Subtract c, forming a + b - c
00023 +0400 000 00700 Add d: a+b-c+d
00024 +0601 000 00674 Store sum
00025 +0000 000 00000 Halt

00674 +000000000000 For sum
00675 +xxxxxxxxxxxx a
00676 +xxxxxxxxxxxx b
00677 +xxxxxxxxxxxx c
00700 +xxxxxxxxxxxx d

The contents of the four words containing a, b, c~
and d are shown as XIS with plus signs. The XIS stand for
any digits, and the signs may be negative.

5

(S)----~---------------(At 87.10*)------------------------

If two numbers are added, there may be an overflow
bit (a carry) to the left of bit 1 in the accumulator,
into bit P. Carries from bit P are' placed in bit Q, and
carries from bit Q are lost. When a "1 "bi t is so placed
in bit P, overflow occurs and the overflow indicator is
turned on. An instruction, TRANSFER ON OVERFLOW, may be
used to test the status of this indicator.

(R)-------------------(88.4 - 89.1)-----------------------

MULTIPLICATION AND DIVISION

MULTIPLY (MPY Y) (+0200); 2-14 cycles. The C(Y) 1s
multiplied algebraically by the C(MQ), and the product is
placed in the AC and the MQ. The less significant half
of the product is placed in the MQ, and the more signifi
cant half is placed in the AC. Positions P and Q of the
AC are set to zero. The sign of the product is placed in
the signs of both registers.

To illustrate multiplication, let us assume for
simplicity that the AC, the MQ, and location Y have 4 bits
and a sign each. Let

C(MQ) = -10112
C(Y) = +01112

The product of these numbers is -01001101; it appears
in the AC and the MQ as follows:

AC: -0100 MQ: -1101

Note that, if the product is small enough (4 bits
here, or 35 bits in the actual MQ) all significant bits
are located in the MQ.

DIVIDE OR HALT (DVH Y) (+0220); 3-14 cycles. The
C(AC)Q,P,1-~5 and the C(MQ)1-~5 are treated as a 72-bit
dividend ana the C(Y) is treated as a 35-bit divisor. The
sign of the AC is the sign of the dividend. If the

*This means "at the bottom of 87."

6

magnitude of the C(Y) is greater than the magnitude of the
C(AC), division takes place. The 35-bit quotient is
placed in the MQ and the remainder is placed in the AC.
The C(Y) is unchanged. If the magnitude of the C(Y) is
not greater than the magnitude of the C(AC), division does
not occur and the computer stops with the divide-check
indicator on; the C(AC) and the C(MQ) remain unchanged.

A similar instruction, DIVIDE OR PROCEED, is available.
If division does not occur because the magnitude of the
C(Y) is too small, division does not occur and the computer
continues in sequence with the next instruction.

To illustrate division, assume again that registers
and words have 4 bits and a sign each. Let the MQ contain
the number 14 (168) and the C(AC) = O. Let the C(Y) = 4·.
The quotient is 3 and the remainder is 2. The answer
appears as follows:

AC: +0010 MQ: +0011

Instructions to load and store the MQ are required to
perform these operations.

LOAD MQ (LDQ Y) (+0560); 2 cycles. The C(Y) replaces
the C(MQ). The C(Y) is unchanged.

STORE MQ (STQ Y) (-0600); 2 cycles. The C(MQ)
replaces the C(Y). The C(MQ) is unchanged.

It is sometimes necessary to move the C(AC) to the
MQ, or vice versa, and to clear the AC except for its
sign. The following instructions are so used.

EXCHANGE AC AND MQ (XCA) (+0131); 1 cycle. The
C(AC)S,1-~5 and the C(MQ) are exchanged. Positions P
and Q of tne AC are set to zero.

This instruction requires no operand; the address
field is left empty (00000) normally.

CLEAR MAGNITUDE (CLM) (+0760,0); 2 cycles. The
C(AC)Q,P,1-35 are cleared and the C{AC)S is unchanged.

(R)-------------------(89.5 - 91.1)------------------------

Example 5.3 Determine the value of the expression

f = (a+b) (c+d)/ac

The quantities a, b, c, and d, having the values 1.5, -3.5,
12.1 and 14, respectively, are stored in sequence, starting
at location 01000. Place the value of f in location 00777.
Scale all numbers upward by a factor of 10.

The numbers in this problem are small enough so that
the MQ alone suffices for all calculations; the AC is not
needed. It is necessary to store an intermediate result,
(a+b), temporarily. This is stored in the location set
aside for f, location 00777.

Before a division occurs, it is necessary to clear
the AC unless it is known for certain that it contains
zero. Here, we are assuming that all products are less
than 35 bits, so that the AC is zero after each multi
plication. After the first division in this program, a
remainder might be left in the AC, so that the register
is cleared, except for sign. The sign must be kept in
the AC because that is taken as the sign of the dividend.
Note the use of the XCA instruction.

(In this listing, the six rightmost octal digits of
the AC and the MQ are shown with each instruction; the
contents after execution are shown. Unknown quantities
are shown by XIS.)

Location Contents C(AC) C(MQ) Remarks

00100 +0500 000 01000 + •• 000017 + •• xxxxxx Load a
00101 +0400 000 01001 - •. 000024 + •• xxxxxx Ad.d b
00102 +0601 000 00777 - •• 000024 + •• xxxxxx Store temp.
00103 +0500 000 01002 + •• 000171 + •• xxxxxx Load c
00104 +0400 000 01003 + •• 000405 + .• xxxxxx Add d
00105 +0131 000 00000 + •• xxxxxx + •• 000405 AC to MQ
00106 +0200 000 00777 - •• 000000 - •• 012144 (a+b)(c+d)
00107 +0220 000 01000 - •• 000000 - .• 000534 Divide by a
00100 +0760 000 00000 - •• 000000 - •. 000534 Clear AC,

keeping sign
00111 +0220 000 01002 - .• 000152 - •• 000002 Divide by c
00112 -0600 000 00777 - •• 000152 - •• 000002 Store r
00113 +0000 000 00000 - •• 000152 - .• 000002 Ha1i1

00777 +000000000000 For result (r)
01000 +000000000017 a (Numbers are scaled up by 10)
01001 -000000000043 b
01002 +000000000171 c
01003 +000000000214 d

7

8

After multiplication, the C(MQ) = -121448 (5220). Division
by 178 (15) gives 5348 (348) with no remainder. Division
of this by 1718 (121) gives 2 with a remainder of 1528
(106). The value of f stored is 2; a more accurate value
is 2.9, but the 9-digit is lost unless precautions are
taken. Scaling all four original quantities as indicated
does not improve accuracy. To avoid the loss of accuracy
in division, it is necessary to scale the dividend up more
than the divisor. This problem is characteristic of fixed
point divis~on in any computer and provides a good argu
ment for floating-point arithmetic.

In loading the MQ for division using LDQ (which is not
done here), the sign of that register must be placed in
the AC. This may be accomplished as follows:

+0560 000 xxxxx
+0500 000 xxxxx
+0760 000 00000

Example 5.4 Evaluate
location 00160. Place the

Location Contents

00200 +0560 000 00160
00201 +0200 000 00160
00202 +0200 000 00160
00203 +0200 000 00160
00204 +0000 000 00000

00160 -000000000015

Example 2·2 Evaluate

F = 8x5

Load MQ
Load AC with same number
Clear AC, keeping sign

p4; p = -13 and is stored in
answer in the MQ.

C(MQ) Remarks

-000000000015 Load pinto MQ
+000000000251 Multiply: p2
-000000004225 Multiply: p3
+000000067621 Multiply: p4
+000000067621 Halt

p

the polynomial

+ 4x3 - x 2

x is stored in location 01000; F is to be left in the MQ.
If the program is written in the manner of earlier

programs - evaluating each term separately and storing it
temporarily - 16 instructions are required. If' we note,
however, that terms have common factors, some coding and
program execution time can be saved. For example, all
three terms have the factor x 2 . The function can be
regrouped as follows:

F = x 2 (x(4+8x2) - 1)

9
The program can be written by starting within the inner
parentheses and performing all operations in sequence,
ending the program outside the brackets.

Location Contents Remarks

00100 0560 000 01000 Load x to MQ
x 2 00101 0200 000 01000 Multiply by x:

00102 0200 000 00201 Multiply by 8: 8x2

00103 0131 000 00000 8x2 to AC
00104 0400 000 00200 Add 4: 4 + 8x2

00105 0131 000 00000 "Sum to MQ
00106 0200 000 01000 Multiply by x
00107 0131 000 00000 Product to AC
00110 0402 000 00202 Subtract 1
00111 0131 000 00000 Diffe rence to MQ
00112 0400 000 01000 Multiply by x
00113 0400 000 01000 Multiply by x
00114 0000 000 00000 Halt

00200 +000000000004 4
00201 +000000000010 8
00202 +000000000001 1
01000 +xxxxxxxxxxxx x

(R)-------------------(92.1 - 92.6)-----------------------

ANALYSIS FOR CODINa

Example 5.6 Write a program to evaluate a general
fifth-order polynomial, leaving the result in the AC. The
coefficients a, b, c, d, e, and f are located in sequence
starting at location 01000; x is in location 00700.

The coding for this problem follows directly from the
last form for a at the bottom of page 91 in the book. The
program starts within the inner parentheses and proceeds
outwa rd.

Location Contents Remarks

00100 +0560 000 01000 Load a into MQ
00101 +0200 000 00700 Multiply by x: ax
00102 +0131 000 00000 Product to AC
00103 +0400 000 01001 Add b: ax + b
00104 +0131 000 00700 Sum to MQ
00105 +0200 000 00700 Multiply by x: (ax+b)x
00106 +0131 000 00000 Product to AC
00107 +0400 000 01002 (ax+b)x + c
00123 +0400 000 01005 a in AC now
00124 +0000 000 00000 Halt

10

Several instructions are omitted; the sequence of
four instructions (EXCHANGE, MULTIPLY, EXCHANGE, and ADD)
is repeated three times after location 00107.

The time for the execution of instructions should be
considered in setting up a problem of this type, especially
if the sequence is to be repeated many times. The
approach taken in Example 5.6 is relatively efficient,
since operations are minimized for the general case. Note
that multiplication takes 2 to 14 cycles, addition takes
2 cycles, and the exchange instruction takes 1 cycle.

(R)-------------------(93.3 - 93:6)-----------------------

TRANSFER INSTRUCTIONS
The transfer instructions on the IBM 7090 c:orrespond

to the jump instructions of the book and on some other
computers.

TRANSFER (TRA Y) (+0020); 1 cycle. The computer
takes its next instruction from location Y and proceeds in
sequence from there.

TRANSFER ON PLUS (TPL Y) (+0120); 1 cycle. If the
sign of the AC is plus, the computer takes its next
instruction from location Y and proceeds from there. If
it is minus, the computer takes the next instruction in
sequence.

TRANSFER ON MINUS (TMI Y); (-0120); 1 cycle. If the
sign of the AC is minus, the computer takes its next
instruction from location Y and proceeds from there. If
it is plus, the computer takes the next instruction in
sequence.

TRANSFER ON ZERO (TZE Y) (0100); 2 cycles. If the
C(AC)Q P 1-31=) is zero, the computer takes its next
instruction from Y and proceeds from there. If it is not
zero, the computer takes the next instruction in sequence.

TRANSFER ON NO ZERO (TNZ Y) (-0100); 2 cycles. If
the C(AC)Q P 1-35 is not zero, the computer takes its
next 1nstr6ction from Y and proceeds from there. If it
is zero, the computer takes the next instruction in sequence.

(M)-------------------(93.6 - 94.4)-----------------------

(The fo llowing comments app ly to 93.6 - 94,.4, which
should be read with these in mind.)

11

The following correspondence of instructions exists:

DELTA 63

JUMP
JUMPMI
JUMPNZ
JUMPPL
LOAD

IBM 7090

TRA
TMI
TNZ
TPL
CLA

The concepts described are of a general nature.

(R)-------------------(94.5 - 97.10)----------------------

CODING SOME DECISIONS

Example 5.7 Code the following operation: If i ~ n,
continue at location 00150; if i > n, continue in sequence.
The flowchart in Fig. 5.3a in the book pictures this
decision.

The two conditions can be rewritten as "if i - n ~ 0"
and "if i - n > 0." Since a test against n is not avail
able directly, this revision is necessary. Conditional
jump instructions are used to check for the first condi
tion, which is really two decisions as far as the computer
is concerned: "if i - n < 0" and "if i - n = 0." If
neither condition holds, the program continues in sequence.
The flowchart in Fig. 5.3b in the book pictures the revised
decision.

Location

00170
00171
00172
00173

Contents

CLA 00500
SUB 00501
TMI 00150
TZE 00150

Load
Form
Jump
Jump

Remarks

i, located in 00500
i - n; n is in 00501
if (i - n) < 0
if (i - n) = 0

Control will go to 00174 if i - n > 0, as required.
In the next two examples, three-way and four-way

decisions must be made. Since all transfer instructions
can make only two-way decisions, it is necessary to place
transfer instructions in sequence to accomplish these
multiple decisions.

Example 5.8 If the C(00500) is (1) negative or zero,
(2) positive but less than 20, or (3) 20 or greater, send
control, respectively, to (1) 00600, (2) 00700, or (3)
01000. This decision appears in Fig. 5.4a in the book.

12

Let the C(00500) = x. The conditions are
1. If x ~ 0, go to 00600;
2. if 0 < x < 20, go to 00700~
3. if 20 ~ x, go to 01000.

The steps in the coding process can be listed as follows:
1. Place x in the AC; jump to 00600 if

negative.
2. Jump to 00600 if zero.
3. Having taken care of nonpositive x, form

x - 20 because condition 2 now becomes
"if x - 20 < 0, go to 00700." Jump as
indicated.

4. Having taken care of x < 20, jump to 01000.
A modified flowchart is drawn in Fig. 5.4b in the book.

Location Contents Remarks

00100 CLA 00500 Load x
00101 TMI 00600 Transfer if x is negative
00102 TZE 00600 Transfer if x is ZE!ro
00103 SUB 00200 Form x - 20
00104 TMI 00700 Transfer if ~x - 20~ < 0
00105 TRA 01000 Transfer if x - 20 L. 0

00200 +000000000024 20

The instructions at 00600, 00700, and 01000, and subsequent
instructions are not listed.

Example 5.9 Either the quantity a (located in 00400)
or the quantity b (located in 00402) is to be stored in
location 00000, depending on these conditions:

If a is positive and b is zero, store a;
if a is positive and b is nonzero, store b;
if a is negative and b is zero, store b;
if a is negative and b is nonzero, store a.
To simplify the coding, assume that a is not zero.

The flowchart for this problem is drawn in Fig. 5.5a in
the book. The coding follows directly from the flowchart,
which is labeled with addresses to match the program
following. As the result of the two tests (on a and on b),
a four-way branch occurs. The four paths mergE:! into two
paths, however, because there are only two actions to be
taken. A modification of part of the flowchart is shown
in Fig. 5.5b in the book.

13

Location Contents Remarks

00120 CLA 00400 Load a
00121 TPL 00125 Go to 00125 if a is +
00122 CLA 00402 Load b
00123 TZE 00130 Go to 00130 if b is 0
00124 TRA 00127 Go to 00127 if nonzero
00125 CLA 00402 Load b
00126 TNZ 00130 Go to 00130 if b is nonzero
00127 CLA 00400 Load a again
00130 ST,0 00000* Store AC (a or b) in 00000
00131 HTR Halt

*Some IBM printing equipment uses the symbol ".0" for the
letter 0 and the symbol "0" for zero. This printing
equipment uses no small letters.

Chapter 6
SYMBOLIC CODING

(R)------------------(102.7 - 103.1)----------------------

A SYMBOLIC PROGRAM
Example 6.1 Evaluate the polynomial

F = 8x5 + 4x3 - x2

x is stored in location X; F is to be left in the AC.
In this program, written in the symbolic la.nguage FAP

for the IBM 7090, 0NE, FOUR, and EIGHT are used for the
address of the constants 1, 4, and 8. This problem was
coded in Example 5.5.

Locn. Oper. Address
START LDQ X

MPY X
MPY EIGHT
XCA
ADD F0UR
XCA
MPY X
XCA
SUB 0NE
XCA
MPY X
MPY X
HTR

0NE +000000000001
F0UR +000000000004
EIGHT +000000000010
X +xxxxxxxxxxxx

(S)--------------------(At
.

104.4)-------------------------

THE ASSEMBLER LANGUAGE
An assembly language very commonly used for the

IBM 7090 computer is FAP (FORTRAN Assembly Program).
is a modification of SAP (Symbolic Assembly Program),
written by United Aircraft for the IBM 704 computer.

14

FAP

15

(R)-------~-----------(106.8 - 107.l)---~----------------

INSTRUCTION FORMAT
The use of the columns on a FAP symbolic card and the

fields they comprise are as follows:

Columns

1 - 6
8 - 14

16 - 72

Field

Location field

Operation field
Address field

Contents

Symbol (definition)

Symbolic operation
Address and remarks

Figure 6.1 in the book also applies to a FAP symbolic card.
The location field may be left blank; several

instructions in Example 6.1 have no symbols in their loca
tion fields. A symbol is defined by being placed in the
location field of an instruction. The symbol may be
placed anywhere in the field. Column 7 must be blank.

The operation field must begin in column 8. The
variable field contaihs a symbolic address which must
begin after at least one blank column following the oper
ation, but no later than column 16. Remarks may be used,
provided at least one blank column precedes them.

(M)------------------(107~4 -109.7)---------------------

(The following comments apply to 107.4 - 109.7,
which should be read with these in mind.)

FAP pseudo-operations correspond exactlY'in their
fun'ction and uset6 the pseudo-operations in the book ..
The following correspondence exists:

HAP FAP -
¢RIGIN ~RG

END END

.0CTAL ¢CT
DECML DEC

BL~CK BSS

The symbol "BSS" stands for block .§..tarting with symbol;
a symbol in the location field is normally used to identi;fy
the block.

16

If the operation and variable fields of a symbolic
card are left blank, FAP assembles a full word of O-bits.
If the operation field alone is blank, O-bits w:1.ll fill
bits S, 1, and 2. If the address field alone is blank,
O-bits will fill bits 21-35, the address field of the
instruction.

(S)--------------------(At 109.10)-----------------------

QUALIFIERS
If it is desired to modify integer interpretation for

several cards, so that all integers are treated as octal,
the SAK pseudo-operation, placed in the operation field,
is used. Cards following it, until a second SAK card is
encountered, are so treated. Successive SAKs reverse
the mode. A decimal qualifier, /D/, is also available.
Any integer immediately following this qualifie:r is
treated as decimal.

(R)------------------(110.2 - 110.6)----------------------

THE ASSEMBLY LISTING
Exam:Qle 6.2 Following is a listing of the program to

evaluate the polynomial

F = 8x5 + 4x3 _ x 2

coded in Example 5.6.
Ob,ject :Qrogram (octal) Source :Qrogram (s~mboli£l

Location Contents Location O:Qer. Address

00100 ¢RG /¢/100
00100 +0560 000 00120 START IDQ X
00101 +0200 000 00120 MPY X
00102 +0200 000 00117 MPY EIGWI'
00103 +0131 000 00000 XCA
00104 +0400 000 00116 ADD F¢UR
00105 +0131 000 00000 XCA
00106 +0200 000 00120 MPY X
00107 +0131 000 00000 XCA
00110 +0402 000 00115 SUB ¢NE
00111 +0131 000 00000 XCA
00112 +0400 000 00120 . MPY X
00113 +0400 000 00120 MPY X
00114 +0000 000 00000 HTH

00115 +000000000001 ¢NE DEC 1
00116 +000000000004 F¢UR DEC 4
00117 +000000000010 EIGHT DEC 8
00120 +000000000000 X

00100 END STARr

17
(R)------------------(111.5 - 112.1)-----------------------

STEPS IN PROGRAM ASSEMBLY
Example 6.3 Compare the quantities p and q, stored

in P and Q, respectively. If p < q, place the number 1
in NUMBER; if P = q, place the number 2 in NUMBER; if
P > q, place the number 3 in NUMBER.

These conditions can ,be rewritten:
1. If P - q < 0, s to re 1;
2. if P - q = 0, store 2;
3. if P - q). 0, store 3.

Case 2 must be checked first, because -0 and +0 are
treated differently. The flowchart 1s drawn in Fig. 6.2
in the book. Note that control is sent to one of three
places so that the proper ,number (1, 2, or J') can be .
obtained for storage in NUMBER. The three possible store,
operations are performed at one location, ST.0RE.

Locn.

START

GET3

GET 1

GET2
ST.0RE

P
Q
NUMBER

Opere

.0RG
CLA
SUB
TZE
TMI
CLA
TRA
CLA
TRA
CLA
ST.0
HTR

.0NE DEC
TW.0 DEC
THREE DEC

END

Address

/.0/200
P
Q
GET2
GETI
THREE
ST.0RE
.0NE
ST.0RE
TW.0
NUMBER

1
2
3
START

Form p - q
Jump :tf zero
Jump if minus
Here :tf, plus. ".3 to AC

1 to AC

2 to AC

Chapter 7
PROGRAM LOOPS

(R)------------------(120.1 - 120.4)----------------------

WHY USE LOO PS?
. 10

Example 7.1 Compute the value of x . The value of
x is small enough so that the number xlO does not exceed
the capacity of a computer word.

From Example 5.4, we note that a sequence of MPY
instructions suffices.

Locn.

X
RESULT

Oper.
IDQ
MPY
MPY
MPY
MPY
MPY
MPY
MPY
MPY
MPY
STQ
HTR

Address
X
X
X
X
X
X
X
X
X
X
RESULT

(R)------------------(120.8 - 122.3)-----------------~---

A SIMPLE LOOP
Example 7.2 Compute the value of xn.
A flowchart appears in Fig. 7.1 in the book. The

quantity p is the current value of the product; its
initial value is 1. Counting is done with index i; its
initial value is also 1. The important step is the multi
plication of the accumulated product by x, producing one
more power of x:

18

19
To allow for the case n = 0 a test is made; in that event,
p is set equal to 1. The symbolic names used to label
flowchart boxes correspond to the symbols in the following
program. The test for loop termination is accomplished
by checking (i - n) against zero.

Locn.
START

TESTN

MLTPY

INCRSE

TEST

D,0NE

N
X
P
I
¢NE

012e r.
CIA
ST,0
ST,0
CIA
TZE
LDQ
MPY
STQ
CIA
ADD
ST,0
SUB
TMI
TZE
HTR

DEC

Address

,0NE
P
I
N
D.0NE
P
X
P
I
,0NE
I
N
MLTPY
MLTPY

1

1 to p and i

Test for zero n

p·x to p

i + 1 to i

Test for end
Back if not done

Note that through the use of a program loop it is a
simple matter to include n as a variable of the problem.

(R)------------------(123.7 - 124.9)---------------~-----

A LOOP WITH ADDRESS MODIFICATION

STORE ZERO (STZ Y) (+0600); 2 cycles. The C(Y) is
set to zero and its sign is set plus.

Example 7.3 Determine the sum of a given set of
n numbers. The numbers are stored in the block beginning
at NUMBRS; their sum is to be placed at SUM.

The flowchart is modified to include the operation
of address modification; it is redrawn in Fig. 7.2 in the
book. The memory box indicates that ai is stored in loca
tion NUMBRS+i-l. Thus, initially, the program sums the
C(NUMBRS); to sum ai, the program sums the C(NUMBRS+i-l).
After the last number is summed, the operand address of the
ADD instruction is NUMBRS+n-l. The flowchart shows, however
that the test for the end of the problem follows the modi
fication of the index, so that the operand address at the
time of the test is NUMBRS+n. Thus, the loop must termi
nate when the ADD instruction has been modified exactly
n times.

20

In the following program, the ADD instruction is
modified after each number is summed. A data instruction,
or instruction used as a constant, can be set initially to
check for the final value of the ADD instruction. When
this constant matches the ADD, the loop terminates; a TNZ
does the matching. In addition, another instruction (at
SETWD) is used to "initialize" the ADD instruction.

It is necessary to set aside a block of words for
the n numbers. Here, 1000 words are reserved. A word is
also set aside ~OF n.

Locn. Opere Address

STZ SUM o to sum
CLA SETWD . Initialize instr.
ST0 ADDNUM
ADD N Set test word
ST0 C0MPAR

L00P CLA SUM Add a number
ADDNUM ADD NUMBRS

ST0 SUM
CLA ADDNUM Modify instr.
ADD 0NE
ST0 ADDNUM
SUB Cf2jMPAR
TNZ Lf2jf2jP

DONE HTR

SUM
SETWD ADD NUMBRS
Cf2jMPAR (ADD NUMBRS+n)
N
,0NE DEC 1
NUMBRS BSS 1000

A number of 7090 instructions have negative operation
codes; STQ and TNZ are among them. Adding +1 to such
instructions has the effect of decreasing the address
portion of the instruction. This difficulty may be avoided
by the consistent use of the following instructions in
place of CLA and ST0 for address modification; their use
ignores the operation code sign, in effect, and arithmetic
is performed as desired.

C LEAR AND ADD LOGICAL (CAL Y) (-0500); 2 cyc Ie s • The
C(Y) replaces the C(AC)p 1-35' Positions Sand Q of the AC
are se t to ze ro. '

STORE LOGICAL WORD (SLW Y) (+0602); 2 cycles. The
C(AC)P,1-35 replaces the C(Y). The C(AC) is unchanged.

These instructions move bit P of a storage word to
bit S of the accumulator and vice versa, so that arith
metic may be performed on the storage word as though it
wer~ a 36-bit positive integer. There are other, more
significant uses for these two instructionsj refer to
Chapter 12.

21

(R)------------------(125.6 - 126.4)-----------------------

POLYNOMIAL EVALUATION
Example 7.4 Write a program to evaluate a polynomial

of order n, for n as large as 100. The number n, the
n + 1 coefficients, a~d the variable x are all given.
These are located, respectively, in N, the block starting
at C¢EFF, and X. The coefficients are bO,bl, ... ,bn .

n n-l F = bOx + blx + ... + bn

A flowchart appears in Fig. 7.3 in the book. The
program has' a structure similar to that of Example 7.3
as regards its address modification and initialization.
The significant operation is the calculation of q, the
accumulated partial polynomial value. The calculation is

qx + b i -. q

Reference to Example 5.6 (page 92 in the book) indicates
why this operation repeated for successive coefficients
bi yields the value of F.

Locn. Opere

CIA
ST¢
CAL
SLW
ADD
SLW

L}2j}2jP LDQ
MPY
XCA

Address

C}2jEFF
Q
SETWD
M}2jD
N
C}2jMPAR
Q
X

b O to Q

Ini tialize

q.x +b i to q

(cont'd)

22
Locn. Opere

M0D ADD
ST0
CAL
ADD
SLW
CLA
SUB
TNZ

D0NE HTR

Q
SETWD ADD
C0MPAR
N
X
0NE DEC
C0EFF BSS

Address

C0EFF+l
Q
M0D
0NE
M0D
M0D
C0MPAR
L00P

COEF'F+l

1
101

Modify instruction

Back if not done

(ADD C0EFF+l+n)

(S)--------------------(At 129.2)-------------------------

INFORMATION ON TAPE

Magnetic tapes for the 7090 computer are ~" in width
and are normally 2400' long. Information is stored in
seven channels, in the manner described in the book.

Data are recorded on tape in one of two modes; the
difference is usually of little concern to the programmer.
In the binary mode, information appears as described in
the book. In the BCD mode, some bit configurations are
changed and the check bit is such that there are an even
number of lIs across the tape width.

Record gaps are ~ II long. The ends of files are
indicated by special marks and/or end-of-file gaps; the
la t te rare 3~" long.

(S)--------------------(At 129.4)----------------------~-

TAPE READING AND WRITING

(The material in this section and in the remainder
of Chapter 7, although hypothetical, is of interest to
the 7090 programmer. He will rarely write his own input
output coding; rather he will use a monitor system,
described in Chapter 11 in the book. Therefore, in order
to appreciate input-output operations, the DELTA 63
instructions should be studied. They are simplified
versions of instructions that actually exist on the 7090.
The latter instructions are much more complex.)

23

Magnetic tape may be read from or written on at the
rates of 75" per second (709 and 7090) or 112.5" per
second (7090). Information passes between core storage
and magnetic tape at rates of 15,000 to 62,500 lines of
bits per second. Each line of bits represents one
character--such as a letter, digit, or punctuation mark-
so that the maximum rate is 62,500 characters per second.
Recent equipment uses rates up to 90,000 characters per
second.

Information is written or read in one direction only.
A tape may be backspaced or rewound, however, and be read
or written on again. Instructions are available to
backspace one record,. to backspace one file, to write an
end-of-file gap and mark, and to rewind a tape.

Data transmitted between core storage and an input
output device (magnetic tape, card reader, card punch,
printer) must pass through a data channel. The operation
of a data channel is initiated within a program in the
computer, but once started the channel operates independ
ently of the program. Data channels control the quantity
and destination of the data transmitted through them.

The computer and a data channel cannot both make a
reference to core storage at the same time, so that the
execution of a main program instruction may be delayed
until the needs of the data channel are satisfied. The
delays do not interfere with the main program in any
other way. If the instruction being executed does not use
core storage when a channel requires a reference to storage,
normally no delay occurs.

A maximum of 10 tapes per channe1 can be used. Each
tape unit has an address, as does each channel. The
combination of the two addresses specifies a particular
tape unit attached to a particular channel.

A card reader reads cards at the rate of 250 cards
per minute. Information punched on the cards may be binary,
decimal, alphabetic, or in another format. The reading
format is controlled by the stored program and a control
panel attached to the reader. Any sequence of channel
commands calling for the uninterrupted transmission of
24 words causes the reading of one complete card. The words
read are stored in consecutive core storage locations,
starting with the address specified in the channel instruc
tion. Word counts of other than 24 may also be given and
ca rds a re read as required.

One card punch may be attached to any channel.
Punched card output may be decimal, alphabetic, binary,
or any other desired form. Cards are punched at the rate

24

of 100 per minute. The punching format is controlled by
the stored program and a control pane 1 on the unit.
Starting with the location in core storage specified by
the channel instruction, 24 words from consecutive
locations are punched on a card. Counts other than 24
may also be punched by a single instruction.

One printer may be attached to any channel. Informa
tion may be printed in any form within the limitations of
the set of characters available. A set of 48 different
characters is available. Information is printed at the
rate of 150 lines per minute. The format of the informa
tion is controlled by the stored program and a control
panel on the printer.

(R)------------------(13l.7 - 132.7)----------------------

Example 7.5 Write a loading program to load from
tape A. .

The READTA instruction in the program below is a
DELTA 63 instruction.* A reading loop, using the skip
feature of this instruction, is established. A flowchart
is drawn in Fig. 7.6 in the book. After a record of
24 words is read in, the reading instruction is address
modified so that the next record is read into memory
at a location 24 addresses later. This process repeats
until the file is exhausted.

Locn. Oper.

READIN READTA
TRA
CAL
ADD
SLW
TRA

N24 DEC

Address

/.0/1000
/.0/1005
READIN
N24
READIN
READ IN

24

Loading point
Starting point
Modify instruction

*The DELTA 63 input-output instructions in these examples
can be simulated by macro-instructions, described in
Section 10.2 and Chapter 17 of the book.

25
(a)------------------(133.1 - 134.6)----------------------

LOADING DATA
STORE ADDRESS (STA Y) (+0621); 2 cycles. The

contents of the address field of the AC, i.e., bits 21-35,
replaces the contents of the address field of location Y.
The C(AC) and the other bits in Yare unchanged.

Example 7.6 Write a card-loading program that stops
loading on ,encountering an end-of-program card which con
tains the octal number 777777777777 in the first word
position.

This loading program is similar to the one coded in
the last example, which reads information from tape. The
only change (aside from the reading instruction) is that a
test for the end-of-program card must be made after each
card is read. As the first word of each card is read into
a memory location, the contents of that location must be
checked for 777777777777; if that number is found, control
goes to the object program for execution. If the end-of
program card is omitted, card reading would be attempted
when no cards are present in the card reader, and the
computer would stop. A flowchart appears in Fig. 7.7 in
the book.

Location

READIN

TEST

N24
SEVENS

Opere

READC
HTR
CLA
SUB
TZE
CAL
ADD
SLW
STA
TRA

DEC
,0CT

Address

/.0/1000

/.0/1000
SEVENS
/.0/1005
READIN
N24
READIN
TEST
READIN

Loading point
No 777777777777
Test first word for 7's

Go to program
Modify instructions

24
777777777777

As an example of a program that reads its data,
consider the summation of n numbers; this problem was
coded in Example 7.3.

Example 7.7 Determine the sum of a given set of
n numbers. The numbers are stored in the block beginning
at NUMBRS; their sum is to be placed in SUM.

26

The numbers are stored on data cards. The number n
is in the first word position of the first data card, and
the n numbers are stored on the following cards, punched
in binary, 24 to a card. The last card is filled out with
zeros. The reading loop is similar to the loop in
Example 7.5, whe re an object program is read in.

Location Opere Address

READC N,l Read in n
TRA ERR~R

L~~P READC NUMBRS Read in 24 numbers
TRA START Go to summation seq.

L~¢P

START

ERR~R

CAL
ADD
SLW
TRA
STZ

N24
L~~P
L~¢P
SUM

The program continues as in ExaIT.ple 7.3.

(R)------------------(135.2 - 136.6)-----------------------

READING OUT RESULTS
Example 7.8 A deck of data cards contains n integers,

one to a card, in the first word position, in binary form.
Write a program that computes the sum of each set of three
integers in succession and writes the n/3 sums on tape.
The number n, a multiple of 3, appears on the first data
card.

(Refer to the book for an analysis and a flowchart.
Note that ST~RAD is equivalent to STA.)

27

Location Opere Address

STEPI READC N,l Read n
TRA ERR¢R Tra if end of file
CAL SETWDI Initialize first loop
SLW L¢¢Pl
ADD N
SLW CMPARI

L¢¢Pl READC NMBRS,l Read a number
TRA ERR,0R
CAL L¢¢Pl
ADD ¢NE
SLW L¢¢Pl
CtA. L¢¢Pl
SUB CMPARI
TNZ L¢¢Pl

STEP2 CAL SETWD2 Initialize second loop
SLW L¢,0P2
ADD ¢NE
STA L,0¢P2+2
ADD ¢NE
STA L¢¢P2+2
ADD N
STA CMPAR2

L¢¢P2 CLA NMBRS Add 3 numbers
ADD NMBRS+l
ADD NMBRS+2
ST¢ SUM
WRITEB SUM, 1 Write sum on tape B
CAL L¢¢P2 Modify instrs.
ADD THREE
SLW L¢¢P2
ADD ¢NE
STA L¢¢P2+1
ADD ¢NE
STA L¢,0P2+2
CLA L¢¢P2+2
SUB CMPAR2 Test for last sum
TNZ L¢¢P2
HTR

¢NE DEC 1
THREE DEC 3
N
SUM
SETWDI READC NMBRS, 1
SETWD2 CLA NMBRS
CMPARI ~READC NMBRS+n,l)
CMPAR2 ADD ** NMBRS+2+n)
NMBRS BSS 3000
ERR,0R

Chapter 8
INDEX REGISTERS

(R)-------------------(141.8 - 142.7)---------------------

THE INDEX REGISTERS
The 709 and 7090 computers each have three index

registers, designated 1, 2 and 4. (The 7094 computer
has seven index registers.) Associated with most instruc
tions is a ~ which specifies one of these registers.
Bits 18-20 in the instruction word comprise the tag field,
pictured in Fig. 8.1 below. This 3-bit field may contain
the integers 0, 1, 2, and 4.* A tag of 0 indicates that

000101000000000000011011010001110111
S 11 -- -.......- -----Operation

1~,-_____ ~

Tag Address
Code

Fig. 8.1 Format of 7090 instruction.

no index register is specified, whereas a nonzero integer
designates a particular one. The symbol XR is used for
"index register," and XRl, XR2, and XR4 refer to the
specified registers. Each index register contains 15 bits.

The seven index registers of the 7094 are designated
1, 2, ... , 7, and the tag field is the same as the other
computers. Integers 0, 1, ... , 7 are used as described
above.

A tag is indicated in FAP by placing its numerical
designator in the variable field, after a comma following
the address, without an intervening blank space. The
following instructions, shown bmth in symbolic and assem
bled form, indicate the use of XRl and XR4, respectively:

Machine word

+0500 00 1 04500

+0400 00 4 04512

Symbolic
CIA
ADD

instruction
LIST, 1

LIST+I0,4

*The integers 3, 5, and 6 may be used in the multiple-tag
mode. Refer to the IBM 7090 Manual.

28

29

The extra blank space, just to the left of the tag, is
included in the assembled machine word for clarity.

In an instruction with no tag (zero in the tag field),
the address of the word that is processed is simply the
operand address. In an instruction with a tag, however,
the address of the processed word is the operand address
decreased by the contents of the specified index register.
This address modification is automatic and temporary; the
instruction does not change, but the effect is as though
it were changed during the execution of the instruction.
As an example, let the C(XRl) = 100; the instruction

ADD WfZjRD,l

will cause the C(WfZjRD-I00) to be added to the accumulator.

(R)-------------------(143.1 - 143.9)-----------~---------

INSTRUCTIONS
LOAD INDEX FROM ADDRESS (LXA Y,T) (+0534); 2 cycles.

The C(Y)21-~5 replaces the contents of the specified index
register. Tne C(Y) is unchanged. .

ADDRESS TO INDEX TRUE (AXT Y,T) (+0774); 1 cycle.
Positions 21-35 (Y) of this instruction replace the con
tents of the specified index register.

The following examples illustrate these instructions;
(1) if the C(NUMBER) = 500, the instruction

LXA NUMBER, 1

places the number 500 in XRl; (2) the instruction

AXT 1000,1

places the number 1000 in XRl.
Several indexing instructions are similar to two

address instructions; they contain two operands. These
instructions have a fourth field, the decrement field,
which has 15 bits; it is pictured in Fig. 8.2. In these
instructions, the operation code occupies only three bits,

001000000000011010010000001001100111
~~ ~8~,- .~

Operation Decrement 'Tag --A-Mress
Code

Fig. 8.2 Format of certain
indexing instructions

30

S, 1, and 2; the decrement field occupies bits 3-17. The
15-bit, unsigned number in the decrement field is the
decrement.

TRANSFER WITH INDEX INCREMENTED (TXI Y,T,D) (+1);
2 cycles. The decrement of this instruction is added to
the contents of the specified index register, and the sum
is placed in the index register. The computer takes its
next instruction from location Y.

This instruction does two distinct things, independ
ently of each other: it modifies an index register by a
specified amount and it transfers control unconditionally.

The form of the instruction in FAP format is the
following:

TXI NEXT,2,26

This instruction increases the C(XR2) by 26 and transfers.
control to NEXT; if the address of NEXT is 01147, then
this instruction is pictured in Fig. 8.2. Note that the
decrement is placed in the variable field, directly after
the tag with an intervening comma. The three fields in
the variable field, the address, tag, and decrement,
appear in that order, but appear in the reverse order
within the instruction.

Frequently, it is necessary only to modify the index
register without transfering control elsewhere; the
following form is then used:

TXI *+1,2,26

The decrement may be written as a negative number:

TXI NEXT,l,-lO

Here, the C(XRl) is decreased by 10. Since decrements are
unsigned numbers, the 2's complement is placed in the
instruction word; the 2's complement of 128 (10) is 777668 ,
so that tbe assembled word for this last instruction is

+1 77766 1 01147

If the C(XRl) = 248 (20) prior to execution of this instru~
tion, it is 000248 + 777668 = 000128 (mod 1000008) after
ward; 128 = 10.

TRANSFER ON INDEX LOW OR EQUAL (TXL Y,T,D) (-3);
2 cycles. If the contents of the specified index register
is less than or equal to the decrement of this instruction,

31

the computer takes its next instruction from location Y.
If the contents of the index register is greater than the
decrement, the computer takes the next instruction in
sequence.

TRANSFER ON INDEX HIGH (TXH Y, T, D) (+3); 2 cycles.
If the contents of the specified index register is greater
than the decrement ~of this instruction, the computer takes
its next instruction from location Y. If the contents of
the index register is less than or equal to the decrement,
the computer takes the next instruction in sequence.

These last two instructions are conditional transfer
instructions; a condition in an index register is tested.
An example of the former instruction is the following:

TXL L~~P ,4,3

Control goes to L¢~P if the C(XR4) is less than or equal
to 3.

(M)-------------------(143.9 - l44.3)--------------------~

(The following comments apply to 143.9 - 144.3.)
The following correspondence of instructions exists:

DELTA 63

SETXRI

SETXR
INCRXM
XJUMP

IBM 7090

AXT
LXA
TXI with an address of "*+1"

TXL (approximately)

(M)------------------(144.4 - 144.10)--------------------

(The following comments apply to 144.4 - 144.10.)

THE VARIABLE FIELD
The material applies equally well to FAP, except for

the examples of instructions. Those instructions, however,
a re me re ly ill us t ra t i ve .

(R)-------------------(145.6 - l46.3)-------------~-------

Example 8.1 Compute the value of xn. This problem
was previqusly coded in Example 7.2. The result is placed
in P.

32
In this program, XRl is used to represent the index i

of Example 7.2. XRl is set to 1 initially and increased
by 1 each loop cycle, after the multiplication occurs.
Then a test of the C(XRl) is made by a TXL instructionj
when the index i exceeds n, after just being increased,
the computation must cease and control passes to D¢NE
instead of being returned to MLTPY for further multiplica
tion.

A test for the case n = ° is included by a test for 0.
Prior to this, 1 is stored in P to allow for this possi
bility. If n ~ 0, P is' later set to xn.

Initially, it is assumed that n is a known number; it
is coded in the decrement of the TXL instruction.

Locn.

START

MLTPY

D¢NE

N
X
P
¢NE

Oper.

AXT
CLA
ST,0
CLA
TZE
LDQ
MPY
TXI
TXL
ST~
HTR

DEC

Var. Field

1,1
,0NE
P
N
D¢NE
,0NE
X
*+1,1,1
MLTPY,l,n
P

n

1

Set i = 1
Set P = 1

Out if n = °
p.x to P
i+l to i
Test for i = n

Note that in this program, n is an integer, placed
initially in the decrement of the TXL instruction.
Normally, n would be supplied as data and would be stored
in the decrement during the running of the program.

An alternate approach is to have the XR value run
backwards, from n down to 1, decreasing by 1 each loop
cycle. This is more common in FAP, because of the fact
that effective addresses are formed by subtraction of
index register contents. The following program uses this
approach. The index register is initially set to nj it
is tested for equality with 1 at the end of the loop
(actually it is tested to see if it exceeds 0). As long
as i exceeds 0, control returns to MLTPY. The initial
test for zero n is done with a TXL instruction.

Locn.

START

MLTPY

D¢NE

N
X
P
.0NE

Oper.

LXA
CIA
ST.0
TXL
LDQ
MPY
TXI
TXH
ST¢
HTR

DEC

Var. Field

N,l
,0NE
P
D,0NE,l,O
,0NE
X
*+1,1,-1
MLTPY, 1,0
P

n

1

33

Set 1 = n
Set P = 1

Out if n = 0

p.x to P
i-I to i
Test for i = 1

(R) ----------------.--- (146.4 - 146.8) ----~----------------

Example 8.2 Determine the sum of a given set of
n numbers. The numbers are stored in the block beginning
at NUMBRSj their sum is to be.placed in SUM.

This problem was previously coded in Example 7.3.
The ADD instruction must refer to all.n numbers in

sequence, so that it is tagged; XRl is used. The effec
tive address initially must be NUMBRSj it must then be
NUMBRS+l, etc. Since index registers decrement direct
addresses, it is most convenient to provide a direct
address that includes the size of the block to be processed.
If the index register is set to that size, the initial
effective address is that of the first word in the block.
If the final index register value is 1, the final effec
tive address is that of the last word in the block. This
approach is feasible if the quantities to be processed are
stored in ascending memory locations.

Initially, we assume that n is known to be 100. The
operand address of the ADD instruction is NUMBRS+IOO,
while the index register is initially 100; the final value
o~ the index register is 1, so that the final effective
address is NUMBRS+99 , the address of the 100th and final
number.

34

Locn. Opere

STZ
AXT
CLA

L~~P ADD
TXI
TXH
ST~

D~NE HTR

SUM
NUMBRS BSS

Var. Field

SUM
100,1
SUM
NUMBRS+IOO,l
*+1,1,-1
L~~P,l,O
SUM

100

Add a number

Test for end

If n is a variable of the problem, as it usually is,
it is necessary to set the address of the ADD instruction
during the run of the program. For this purpose, the data
instruction at XNUMBR is used, and the STA instruction
sets the address. (Alternately, the decrement of an
indexing instruction can be set, as in the first program
in Example 8.1.) However, it is still necessary to know
the upper bound on n, so that a block can be set aside.
Assume that bound is 100; the resulting program follows.

Locn. Opere Var. Field

CLA XNUMBR Set ADD instr.
ADD N
STA L~~P
STZ SUM
LXA N,l
CLA SUM

L~~P ADD **,1 (NUMBRS+n)
TXI *+1,1,-1
TXH L~~P,l,O
ST~ SUM

D~NE HTR

SUM
N
XNUMBR NUMBRS
NUMBRS BSS 100

The "**" in the variable field of the second ADD instruc
tion indicates that an address is to be supplied when the
program is run.

35

(R)-------------------(147.2 - 147.8)---------------------

Example 8.3
of order n, for n
coefficients, and
block starting at

This program

Locn. Opere

CLA
ADD
STA
LXA
LDQ
MPY
XCA
ADD
XCA
TXI
TXH
STQ
HTR

Q
N
X
XC.0EFF
C.0EFF BSS

Write a program to evaluate a polynomial
as large as 100. The number n, the
the variable x are loc·ated in N, the
C~EFF, and X, respectively.
was previously coded in Example 7.4.

Var. Field

XC¢EFF
N
L,0,0P+2
N,l
C,0EFF
X

**,1

*+1,1,-1
L,0,0P,l,O
Q

C,0EFF+l
101 .

Set ADD instr.

bQ to MQ
C(AC).x + bi to AC

Three more indexing instructions are described. The
first two permit the contents of an index register to be
saved in storage. The third combines the operations
performed by the pair of TXI and TXH instructions in the
last four programs into one instruction.

STORE INDEX IN ADDRESS (SXA Y,T) (+0634); 2 cycles.
The contents of the specified index register replaces the
C(Y)21-~5. The C(Y)S 1-20 is unchanged.

STORE INDEX IN DECREMENT (SXD Y,T) (-0634); 2 cycles.
The contents of the specified index register replaces the
C(Y)3-17. The C(Y)S l,~ 18-35 is unchanged.

TRANSFER ON INDEX (1IX Y,T,D) (+2); 2 cycles. If
the contents of the specified index register is greater
than the decrement of this instruction, the number in the
index register is decreased by the decrement and the
computer takes its next instruction from location Y. If
the contents of the index register is less than or equal
to the decrement, the index register is unchanged and the
computer takes the next instruction in sequence.

The action of this instruction is pictured in Fig. 8.3.
Location Y in this instruction is usually the return point
in a loop and hence precedes the test at the TIX instruc-·
tion.

I
TIX Y,j,d 1

d = decrement
/'

/

Y = operand addr. d >
XRj = index reg. j

to location Y to next instr.

Fig. 8.3 The TIX instruction.

(R)-------------------(148.4 - 152.7)---------------------

Example 8.4 Given a set of n numbers in LIST, count
the number of negative numbers present; n is at most 1000.
Place the count in C¢UNT.

This problem was analyzed in Section 2.2. A flow
chart appears in Fig. 8.2 in the book. Index i counts
loop cycles and index j counts the number of negative
integers. XRl and XR2 are used for these, respectively.
At the end of the program, the C(XR2), the desired count,
is placed in C¢UNT.

The TIX instruction is used for loop control and the
STA instruction is used to set the address of the CLA
instruction that places a number in the AC for testing.

37

Locn. Oper. Var. Field

I SET 1 Set index symbols
J SET 2

CLA XLIST Set address of instr.
ADD N
STA TEST
LXA N,I Set index i
AXT O,J Zero index j

TEST CLA **,I (LIST+n)
TZE TIXPT No count if 0
TPL TIXPT No count if +

INCRSE TXI *+l,J,l j+l to j (if number is -)
TIXPT TIX TEST,I,l

SCA C,0UNT,J Store count
HTR

N
C¢UNT
XLIST LIST
LIST BSS 1000

Example 8.5 Given 80 numbers, find the sum of the
tenth powers of the numbers. The numbers are stored in
TABLEZ; the sum is to go in SUMZ.

This problem was analyzed in Section 2,4 (page 36),;
a flowchart appears in Fig. 8.3 in the book.

Since the flowchart shows two nested loops, two index
registers are required for the two indices 1 and j. The
current value of the accumulator during the multiplication.
process is called p. The inner loop of this problem, which
computes the tenth power of a number, is similar to the
loop in Example 8.1. The outer loop, which sums the powers,
is similar to the loop in Example 8.2. Summation cannot
accumulate in the AC, since that register is also used
during multiplication. Therefore the computed partial sums
are stored in SUMZ. Symbolic indices are not used,
although they would serve well in this program. Because
the number of inner and outer loop cycles are known,
addresses can be coded into the program.

38

Locn. Opere

STZ
AXT

L9j.0PI AXT
LDQ

LJ2jJ2jPJ MPY
TESTJ TIX

XCA
SUMI ADD

ST9j
TESTI TIX

HTR

,0NE DEC
SUMZ
TABLEZ BSS

Var. Field

SUMZ
SO,l
10,2
J2jNE
TABLEZ+SO,l
LJ2j9jPJ,2,1

SUMZ
SUMZ
LJ2jJ2jPI,l,l

1

So

Clear sum

p·number to p(AC)
j+l to j and test

Sum+p to Sum

Example 8.6 Given a list of 1000 integers, sort them
into negative and positive integers, and compute the sums
of the two lists. .

The numbers ai start at location LIST. Let the
negative integers be placed in the block starting at NEGLST
and the positive integers be placed in the block starting
at P.0SLST. Let N.1 be the jth location in the NEGLST
block; let Pk be the kth location in the P.0SLST block.
Place the sums in NEGSUM and P,0SSUM; let Sn and Sp be the
negative and positive sums. A flowchart appears in
Fig. S.4 in the book.

Three index registers are to be used. XRl is the
loop control XR (index 1); XR2 and XR4 will be used as
pointers to designate where in NEGLST and P.0SLST the
integers are to be stored (indices 1 and k). Since index
registers modify by decrementing rather than by incre
menting, the index register contents must be decreased
each time entries are made into the tables. Thus, to
store a positive number this sequence is used:

Opere

ST,0
TXI

Var. Field

PJ2jSLST+IOOO, K
M,0D,K,-l

The first instruction stores the number, and the second
modifies XR4 (k) so that the next time a positive number
is stored, it is placed in the next word in the list. 1'he
TXI instruction transfers control to M~D, where the TIX
instruction controls the outer loop. In this manner, XR4
indicates at any time the next available location for

storage of an integer. The same is true for XR2. These
index registers point to the locations in memory; hence
they are called pointers when so used.

Locn. Opere

I
J
K

FETCH

MINUS

PLUS

M,0D

NEGSUM
P.0SSUM
LIST
NEGLST
P.0SLST

SET
SET
SET
STZ
STZ
AXT
AXT
AXT
CLA
TPL
ST,0
ADD
ST,0
TXI
ST,0
ADD
ST,0
TXI
TIX
HTR

BSS
BSS
BSS

Var. Field

1
2
4
NEGSUM
P¢SSUM
1000,1
1000,J
1000,K
LIST+lOOO,I
PLUS
NEGLST+lOOO, J
NEGSUM
NEGSUM
M,0D,J,-l
P0SLST+lOOO,K
P0SSUM
P,0SSUM
*+l,K,-l
FETCH,I,l

1000
1000
1000

Set index symbols

Set main counter
Set j, k counters

Fetch a number
Test sign
Store in list
Sn + no. to Sn

Modify j
Store in list
Sp + no. to Sp

39

The number of entries in NEGLST and P,0SLST are avail
able in the index registers after the program is finished,
in complemented form. For example, XR2 contains the
difference between 1000 and the number of negative numbers.

Two methods of loop control have been used several
places in the examples in this chapter. One method uses
the TXI-TXH pair of instructions; the other uses the
TIX instruction. In the examples here, both approaches
accomplish the same functions: (1) index modification by
constant amounts and (2) testing for the end of the looping
process. In both cases, also, the index runs from an
initial value, n, down to a final value, usually 1, in
steps of 1: n, n - 1, n - 2, , 3, 2, 1. If, however,
it is desired that the index run from one limit down to
another, where the lower limit is not equal to or less than
the decrementing amount (the step), the TIX instruction

40
cannot be used; the TXI-TXH pair is required. Assume, for
example, that the index is required to run as follows:
100,98, 96, ... , 44, 42, 40. These instructions can be
used:

AXT 100,1

TXI *+1,1,-2
TXH L¢¢P, 1,39

As soon as the index decreases to 38, the loop will stop.
The TIX instruction cannot provide this flexibility.

(R)-------------------(153.1 - 153.3)----------------------

THE TIME-SPACE BALANCE
This material is discussed in the book. The coding

example for the 7090 is the following.

Locn. Opere

L~¢P

CLA
AXT
ADD
ADD
ADD
TXI
TXH
ST~

Yare Field

ZER~
60,1
NUMBRS+60, 1
NUMBRS+61,1
NUMBRS+62,1
*+1 1 -3 , ,
L~~P,l,O
SUM

Add 3 numbers

Modify index by 3

(S)---------------------(At 154.7)-------------------------

NON LOOP INDEX REGISTER USAGE
When index registers are used as counters, their

contents generally start at 0 or 1 and are increased
regularly, usually by steps of 1. When used as pointers,
however, their contents usually decrease so that they point
to successive memory words at increasing memory addresses;
this is due to the decrementing nature of these registers.

(R)-------------------(155.0 - 156.3)----------------------

TABLE-LOOK-AT
PLACE ADDRESS IN INDEX (PAX O,T) (+0734); 1 cycle.

The C(AC)21-35 replaces the contents of the specified index
register. The C(AC) is unchanged.

41

No address is involved, although a tag is necessary.
To indicate that the integer in the variable field is a
tag rather than an address, a comma must precede the tag.
This is-required by the convention in Section 8.1 in the
book. An example of one instruction is the following:

PAX 0,2·

Another useful instruction is the following.
PLACE INDEX IN ADDRESS (PXA O,T) (+0754); 1 cycle.

The contents of the specified index register replaces the
C(AC)21-~5 and the remainder of the AC is cleared. (If
the tag Is 0, the AC is cleared completely.)

This instruction is approximately the opposite of
PAX, except that the rest of the AC (bits S,Q,P,1-20) is
cleared. Thus the instruction

PXA 0,0

may be used to clear the AC.
Example 8.7 Given 2000 positive integers, all less

than 100 in value, determine a histogram as follows:
compute the distribution of integers in ten equal intervals:
0-9, 10 - 19, ... , and 90 - 99. The integers are
located in the block starting at LIST.

The interval to which each integer belongs can most
readily be found by dividing it by 10, discarding the
remainder. If the quotient is q, the integer lies in the
(q+l)th interval.

The value q is then used to set an index register and
thereby to select one of 10 counters, which is then incre
mented by 1. These counters count the n~mber of integers
in the 10 intervals. A flowchart is drawn in Fig. 8.5 in
the book. The 10 counts are n l , n2, ... , n lO '

Locn. Opere Var. Field

AXT 10,2 Clear block
STZ CTABLE+IO,2
TIX *-1,2,1
AXT 2000,1

NEW~NE LDQ LIST+2000,1 Fetch an integer
PXA 0,0 Clear AC
DVP TEN
XCA Int./IO to AC
PAX 0,2 . . . to XR2
CLA. CTABIE+9,2 Fetch proper counter
ADD .0NE nq + 1 to nq
ST.0 CTABIE+9,2
TIX NEW.0NE, 1,1
HTR

(Cont 'd.)

42

Locn. Opera Var . Field

.0NE DEC 1
TEN DEC 10
CTABlE BSS 10 The 10 counters
LIST BSS 2000

(R)-------------------(156.7 - 157.8)----------------------

PUSH-DOWN LISTS

Example 8.8 The block of 1000 words at PDLIST
contains a set of k items (numbers), the first of which is
located in PDLIST, the head of the list. The items are
stored in successive memory words; the number (lOOO-k) is
stored in XR4.

The following actions occur:
(1) An item is added to the bottom of the list, and

the C (XR4) 1s decrease.d by 1 to reflect the
addition.

(2) An item is removed from the top of the list, the
list is moved up in its entirety one position,
and the C(xR4) 1s increased by 1 to reflect the
removal.

The sequence of these actions is unknown{ they may dccur
in any sequence, e.g., (1), (2), (2), (2), (1),
This situation may be likened to a purchase order proces
sing scheme, where orders are handled in the order
received; new orders go at the bottom while the top order
is processed first. This approach is sometimes called
"first-in-first-out" sequencing.

The number k may be zero, but we assume it is never
negative; that is, no more items are removed than are added,
if we start with an empty l1st.

Two subprograms (or routines) are required; one to add
an item and one to remove an item. These must be coded
independently, since that is how they are used. Let the
item to be removed be stored in .0LD.

The add-item routine (ADDITM) consists of these steps:
1. The C(NEW) must be placed at the bottom of the

list; the address of the first free location is
given as PDLIST+1000,4 since the C(xR4) is -k,
the number of items in the list.

2. The C(XR4) must be decreased by 1.
The flowchart in Fig. 8.6a in the book shows the ADDITM
routine. The ith word in PDLIST is L1.

43

The remove-item routine (REMITM) consists of these
steps:

1. The C(PDLIST), the first item, must be stored in
¢LD.

2. The k-l remaining items must be moved up one
word each.

3. The c(xR4) must be increased by 1.
To accomplish the movement of k-l items, a loop is

established. The TXI-TXH pair of instructions is used
because the index runs from 1000 down to 1002 - k; to
effect this, the decrement in the TXH instruction must be
1 less, 1001 - k. After XR4 is increased by 1 so that it
contains this number, its contents are placed in the TXH
decrement by the SXD instruction.

Locn. Oper" Var. Field

ADDITM CLA
ST,0
TXI

NEW Put item at bottom
PDLIST+I000,4 of list
*+1,4,-1

REMITM CLA PDLIST
ST.0 .0LD
TXI *+1,4,1
SXD TEST,4
AXT 1000,1
CLA PDLIST+I001,1
ST.0 PDLIST+I000,l
TXI *+1,1,-1

Put first item in .0LD

XR4: 1001 - k

Move k - 1 items
up 1 position

TEST TXH M.0VE,l,** (1001 - k)

(M)-------------------(159.4 - 161.5)---------------------

(The following comment applies to 159.4 - 161.5.)
This correspondence exists:

IBM 7090

CLA

DELTA 63

L.0AD

(R)-------------------(162.4 - 164.6)---------------------

USING INDIRECT ADDRESSING
The following pseudo-operation is also used to set

aside blocks of storage in memory. Under certain condi
tions, it is more useful than BSS.

44

BES (Block ending with Vmbol). A block·of words or
the size indicated in the variable field of this pseudo
operation is set aside for later use at the point in the
program at which this card occurs. The location associated
with the symbol appearing in the location field is the
first address after the block. Thus, in the following

LIST BES 200

if the last location used before the block was 00300, then
00301 through 00610, 3108 (200) locations long, are set
aside for the block, and location 00611 is associated
with LIST.

Example 8.9 Given five blocks of numbers and a
sorted list of the starting addresses of the blocks, write
a program to process the blocks in the indicated sequence.
The program is to be written so that each number to be
processed is loaded into the accumulator and processed in
some manner. (This processing is not of interest here
and is therefore not coded.)

Much detail and analysis of this problem is given in
the book. Note, however, that the addresses in the S~RTED
block are the BES type. The coding in FAP follows.

Locn. Opere Var. Field

AXT 5,2 Set i index
START LXA BLSIZE,l Set j index

CLA* S~RTED+5,2

(Processing routine here)

TIX START+l,l,l
CAL START
ADD ~NE
SLW START
TIX START,2,1
HTR

Chapter 9
SEQUENCING IN MEMORY

{M)-------------------{168.2 - 168.6)--------------------

(The following comment applies to 168.2 - 168.6.)
The 7090 compare instruction is abbreviated as CAS,

and bits Sand 1-35 of the accumulator are involved.

(R)-------------------{168.7 - 169.8)---------------------

Example 9.1 Given a set of n numbers (al,a2, ...),
determine the largest number. The numbers, of which there
are no more than 1000, are stored in the block starting at
SET; thelargest number is to be stored in BIG.

A flowchart appears in Fig. 9.1 in the book. Ini
tially, the first number is placed in the AC. Then, the
C(AC) is successively compared with a2, a3, ... , until a
larger number is found. When a larger number is found, it
is placed in the AC and the process repeats, the C(AC)
being compared to all numbers next in sequence. After all
numbers are tested, the AC contains the largest number in
SET; it is stored in BIG. The flowchart indicates that
the1n dex is initially set to 1, which causes al to be
compared to itself. Although unnecessary, this is done
for uniformity with loops in other programs.

Locn. Opere

FETCH

NEXT

CLA
ADD
STA
STA
CLA
LXA
CAS
TRA
TRA
CLA
TIX
ST.0
HTR

Var. Field

XSET
N
FETCH
FETCH+3
SET
N,l
**,1
NEXT
NEXT
**,1
FETCH,l,l
BIG

(Cont t d.)

45

Set instructioss

a l to AC

(SET+n)
C~ACl greater
C AC equal
C AC less; a i to AC

46

Locn. Opere

BIG
N
XSET
SET BSS

Var. Field

SET
1000

(S)---------------------(At 1~0.1)------------------------

The 7090 computer has a number of test instructions
that are of the skip variety; each tests a condition within
the computer and causes the computer to continue in
sequence or skip one instruction, depending on the outcome
of the test. Two such instructions are the following.

STORAGE ZERO TEST (ZET Y) (+0520); 2 cycles. If the
C(Y)1-35 is zero, the computer skips the next instruction
and proceeds from there. If it is not zero, the computer
takes the next instruction in sequence. The C(Y) is
unchanged.

STORE NOT ZERO TEST (NZT Y) (-0520); 2 cycles. If the
C(Y)1-3S is not zero, the computer skips the next instruc
tion ana proceeds from there. If it is zero, the computer
takes the next instruction in sequence. The C(Y) is
unchanged.

(R)-------------------(170.5 - 171.7)---------------------

FIXED BRANCHING
CLEAR AND SUBTRACT (C18 Y) (+0502); 2 cycles. The

negative of the C(Y) replaces the C(AC)$~~-~5. Positions P
and Q of the AC are set to zero. The C(r) Is unchanged.

Example 9.2 Code a branch point that sends control
alternately to operations P and Q.

There are a number of ways to code an alternating
branch point. Using instructions already studied, we shall
base the decis10n on the sign of a number in memory. The
sign is reversed every time control is sent to the branch
point, after which the sign is tested with a TPL instruc
tion. Since the sign is alternately plus and minus, the
branching occurs. A flowchart appears in Fig. 9.2 in the
book.

Locn. Opere Var. Field
C18 SIGNWD Change sign of SIGNWD
ST¢ SIGNWD
TPL ¢PERP Tra to opere P
TRA ¢PERQ Tra to opere Q

SIGNWD DEC 1
If the initial sign of SIGNWD is plus (as here), control
will first go to Q, since the sign is changed before the
test. The C(SIGNWD) will be alternately +1 and -1.

47

Example 9.3 Code a branch point that sends control
to one of four ope~ations in cyclic sequence: P, Q, R, S,
P, Q, ••• •

A tagged TRA. instruction is used to produce a cycling
transfer of control (with XR1). The effective address of
this instruction is BRANCH, BRANCH+l, ... , BRANCH+3, in
sequence, sending control, respectively, to ¢PERP, ,0PERQ,
... , ,0PERS. Control then goes to operations P, Q, R,
and S. To produce these effective addresses, XRl is set
to 3, 2, 1, 4, 3, 2, 1, Decreasing the C(XR1) by 1
is no problem, but following 1 with 4 requires special
treatment. Initially, early in the program, the C(XR1)
is set to 4 and is then decreased by 1 just prior to each
transfer at the branch point. A TXH instruction tests
for the case when the (XR1) falls to 0, at which time it
is reset to 4 befOre the transfer.

A flowchart appears in Fig. 9.3 in the book.

Locn. Opere Var. Field

AXT 4,1 (Set early, in program)
TXI *+1,1,-1
TXH JUMPS, 1,0 Test index; tra if 1
AXT 4,1 or greater; reset if

JUMPS TRA BRANCH+4,1
BRANCH TRA $ZJPERP C(XR1) = 4

TRA ¢PERQ 3
TRA $ZJPERR 2
TRA $ZJPERS 1

°

The program can be made slightly simpler with the use
of indirect addressing, flagging the first TRA instruction
(at JUMPS) and removing the operations from the next four
instructions. The extension of this technique to any
number of paths is straightforward.

(R)----------------~--(172.7 - 174.3)----------------~----

VARIABLE BRANCHING
Example 9.4 Code a branch point that sends control

to one of five locations (Xl, X2, .•. , X5) if the
C(DIGIT) = 1, 2, ... , 5, respectively.

This problem is similar to the four-way branching
problem of Example 9.3, ,except that the branching depends
on the data. (Presumably, the C(DIGIT) is determined

48
during the program execution and thus depends on data.)
All that is necessary is that the C(DIGIT) be loaded into
an index register and that a jump be effected with a
tagged TRA instruction.

Locn. Opere

JTABLE

LXA
TRA*

Yare Fie ld

DIGIT, I
JTABLE+5, I
X5
x4
X3
X2
Xl

If the C(DIGIT) = j, then j is placed in XRI nd the
effective address of the TRA instruction is JTABLE+5-j,
so that a transfer to Xj occurs, as required. A check
on the C(DIGIT) might be necessary to avoid an erroneous
transfer.

Example 9.5 Code a branch point that sends control
to one of eight locations (LO, LI, ... , L7), depending
upon the signs of three variables, a, b, and c, in the
following manner:

Negative c Positive c

b b
~ ~

+ +

a {:
LO L2

{:
L4 Ii>

a
LI L3 L5 L7

Two distinct approaches are possible here. In one,
the signs of the three variables are tested in sequence;
an eight-way branch results. A flowchart is given in
Fig. 9.4a in the book. In the other, a digit j is built
up for an eventual jump to location Lj. Weights can be
assigned to the algebraic signs of the variables:

a : " " • O· "+". I - · , •

b: " -". O' "+". 2 · , ·
c : II _". O' "+". 4 · , ·

49

As the signs are checked, the appropriate weights are
summed to form the proper value of j. Finally, j is used
to modify a transfer address as in the last example.

Locn. Oper. Var. Field

.
AXT 0,1 o to j
CLA A Test a
TMI *+2
TXI *+1,1,+1 j+1 to j
CLA B Test b
TMI *+2
TXI *+1,1,+2 j+2 to j
CLA C Test c
TMI *+2
TXI *+1,1,+4 j+4 to j
TRA* BRANCH+7,1

BRANCH L7
L6
L5
L4
L3
L2
L1
LO

{R)-------------------{176.4 - 178.7)---------------------

Example 9.6 Five coding sequences are available for
use in a computer problem: A, B, C, D, and E. They are
to be used in sequence three ways, depending upon which of
three conditions is met by data being processed:

Case 1: use A, B, and D.
Case 2: use A, C, D, and E.
Case 3: use B, C, and D.

Two approaches are analyzed and flowcharted in the
book. The first method uses a pair of instructions to
effect the switching as follows:

Opere

CLA
TZE

Var. Field

INDA
SKIPA

Skip A if zero

50

The second method uses the following types of instruc
tions before each box:

TRA
TRA
TRA

*+3,1
*+2
SKIPA

Here if C(XR1) = 2
Here if C(XR1) = 1

CJ:)apter 10
Su:BROUTINES

(R)------------------(182.10 - 183.4)---------------------

Example 10.1 Wri te a program to evaluate e:

e = a 2 + b2 + c 2 + d 2

The squares, as they are computed, must be· stored
temporarily. A three-word block (TEMP) is set aside for
this purpose. As in earlier programs, it is assumed all
products are small enough to remain in the MQ with fixed
point multiplication.

Locn. Opere Var. Field

SUMSQ LDQ A Square a
MPY A
STQ TEMP
LDQ B Square b
MPY B
STQ TEMP+l
LDQ C Square c
MPY C
STQ TEMP+2
LDQ D Square d
MPY D
XCA
ADD TEMP Sum the squa re s
ADD TEMP+l
ADD TEMP+2
ST0 E . . .

TEMP ESS 3

(R)-------------------(185.4 - 185.9)---------------------

Example 10.2 Write three open subroutines, each of
which computes the sum of a set of numbers; the sets are
50, 100, and 250 in size.

The sets begin at locations LIST1, LIST2, and LIST3;
place their sums at SUM1, SUM2, and SUM3, respectively.
Assume that the latter three locations are cleared.

51

52

Oper. Var. Field

AXT 50,1
PXA 0,0
ADD LIST1+50,1
TIX *-1,1,1
ST¢ SUM1

AXT 100,1
PXA 0,0
ADD LIST2+100,1
TIX *-1,1,1
ST0 SUM2

AXT 250,1
PXA 0,0
ADD LIST3+250,1
TIX *-1,1,1
ST0 SUM3

(S)---------------------(At 186.4)------------------------

MACRO-INSTRUCTIONS
In BE-FAP, the coding sequence defining the basic

structure of an open subroutine is delimited by the pseudo
operations MACR0 and END.* There is no ambiguity between
this END and the last card of a FAP program because each
MACR0 pseudo-operation is matched by the assembler to an
END pseudo-operation.

(R)-------------------(186.5 - 186.7)---------------------

The routine of Example 10.2 would be written as
follows as a macro-definition:

Locn. Opere Var. Fie 1d

SUMBLK MACR0 A,B,C
AXT B,l
PXA 0,0 Clear AC
ADD A+B,l
TIX *-1,1,1
ST0 C
END

*BE-FAP is the assembler at Bell Telephone Laboratories
for use with the 7090 and 7094 computers; it is widely
used, with variations, at other installations of that
computer.

53

(R)-------------------(188.l - 188.5)---------------------

TRANSFER OF CONTROL
A special instruction is available for the purpose of

transfering control to a closed subroutine.
TRANSFER AND SET INDEX (TSX Y) (+0074); 2 cycles. The

2's complement of the computer's instruction counter
contents is placed in the specified index register. The
computer takes its next instruction from location Y.

By storing in an index register the lo·cation of the
transfer instruction, i.e., the location from where control
came, a means is provided to return control to the main
program. For example, assume control is to return to the
instruction following the TSX instruction, i.e., to READY+l
in the following:

Locn. Opere

READY TSX

Var. Field

SUBRTE,4

The following instruction, located within the subroutine,
effects the return:

TRA 1,4

Let L be the location of the TSX instruction, i.e., the
address READY. Since the c(xR4) = -L, the effective address
of the transfer instruction is 1-(-L), or L+l, as required.

The use of the TSX instruction or other instructions
to establish a means for the return of control is termed a
linkage. By convention, XR4 is almost always used for this
purpose. An example of a linkage that does not use index
registers is the following. In the main program,. these
ins tructions a re used:

Locn. Opere

RETURN

CLA
TRA
. . .

Var. Field

*
SUBRTE . . .

Place address of this
instr. in AC

Return here

54
The subroutine coding is started and terminated by these
instructions:

SUBRTE ADD
STA

TW¢
G¢BACK

G¢BACK TRA **

Add 2 to AC to produce
return 10ca tion

The location address in the accumulator must be increased
by two to effect a return to RETURN.

{R)-------------------{189.7 - 190.2)------------------·--

TRANSFER OF INFORMATION
As an example, if a closed subroutine SUMBLK is

written to sum a set of numbers, as coded in Example 10.2,
one calling sequence might be:

Locn. Opere

M~VE TSX

Var. Fie 1d

SUMBLK, 4
LIST1
50
SUM1

As seen here, the information stored in the calling
sequence may be of several types: (a) the address for a
result or the address of one data word may be given
(e.g., SUM1); (b) the starting address of a block of words
may be given (e.g., LIST1); (c) the size of a block of
words may be given (e.g., 50).

The subroutine has the job of obtaining the informa
tion for its use from the calling sequence. The effective
address of the first word following the TSX instruction is
given by "1,4," so that the following instructions are
equivalent:

CLA 1,4
CLA M.0VE+l

These instructions load the address LISTl into the accumu
lator. Similarly, the other ar~uments in the calling
sequence can be addre ssed with 2,4" and "3,4".

The alternate linkage described, which uses no index
registers, can also be used with parameters placed in the
words immediately following the transfer to the subroutine.

55
Within the subroutine, the addition of 2, 3, or 4 to the
address in the accumulator at the start provides the
addresses of the parameters in the ma:tn program. Addi tion
of 5 provides the return address.

(R)-------------------(190.7 - 191.6)---------------------

Example 10.3 Write the SUMBLK macro-instruction of
Section 10.2 as a closed subroutine.

Since all parameters are given in the calling sequence,
they must be moved to the body of the subroutine. Three
instructions of the form

CLA M,4

where M is 1, 2, and 3, load the contents of the address
fields of the calling sequence into the AC. STA instruc
tions store these addresses in the proper places in the
routine. The heart of the subroutine, which computes the
sum of the numbers in the block, is the same in form as
the macro-instruction. Because XRl is used by the sub
routine, its contents must be saved. Note that the
address at SUBI is set by adding two parameters from the
calling sequence.

Locn. Oper. Var. Field

SUMBLK SXA SAVEXl,l Save XRl
CLA 1,4 Fetch list address
ADD 2,4 Add list size
STA SUBI
CLA 2,4 Fetch list size
STA SUB2
CLA 3,4 Fetch sum address·
STA SUB3

SUB2 AXT **,1 (size)
PXA 0,0 Clear AC

SUBI ADD **,1 (list addr + size)
TIX *-1,1,1

SUB3 STf2j ** (sum address)
LXA SAVEXl,l Restore XRl
TRA 4,4

SAVEXI

56
This subroutine is generalized so that any calling

sequence in the proper form can call upon it. The following
calling sequence will result in the summation of the 100
words at LIST2:

TSX SUMBLK,4
LIST2
100
SUM2

(R)-------------------(19l.7 - 192.4)---------------------

Example 10.4 Write SUMBLK as a closed subroutine.
Since the size of the block, rather than the address of a
location containing the size, is given in the calling
sequence, indirect addressing is not used to obtain that
parameter. The tag on the ADD instruction (see
Example 10.3) must be placed in the calling sequence .

. The ca lling sequence:

Locn. Opere Var. "Fie ld

T3X SUMBLK,4
LIST2+100,1
100
SUM2

The subroutine (note the alternate method of restoring
XR1) :

SUMBLK SXA
CLA
STA

SUB2 AXT
PXA
ADD *
TIX
ST~*

SAVEXI AXT
TRA

SAVEX1,1
2,4
SUB2
**,1
0,0
1,4
*-1,1,1
3,4
** 1 4,4

Fetch list size

(size)

Restore XRl

The flexibility offered by the combined use of indirect
addressing and tags on both the direct and indirect
addresses is illustrated.

57

(~1-------------------(192.6 - 192.8)----------------------

Locn. Opere Var. Field

SUMBLK MACR,0 A,B,C
TSX SUMBLK,4

A
B
C

END

The macro-call:

SUMBLK LISTl,50,SUMl

(R)---------------(193.0 - 195.3)---------------·-----------

Example 10.5 Write a closed subroutine for the
evaluation of e:

The calling sequence:

Locn. Oper. Var. Field

TSX SUMsQ,4

The subroutine:

SUMSQ LDQ*
MPY*
STQ
LDQ*
MPY*
STQ
LDQ*
MPY*
STQ
LDQ*
MPY*
XCA

A
B
C
D
E

1,4
1,4
TEMP
2,4
2,4
TEMP+l
3,4
3,4
TEMP+2
4,4
4,4

(Cont'd.)

58

Locn. Oper..!... Var. Field

ADD TEMP
ADD TEMP+l
ADD TEMP+2
ST.0* 5,4
TRA 6,4

TEMP BSS 3

In this example, the use of indirect addressing does
not slow down the subroutine. In Example 10.4 flagging is
effective within a loop that cycled n times. In this sub
routine no loop is present.

Example 10.6 Write a program to evaluate

F = .;x + j x2 - y2 + (x2 + y2 + z2 + u 2)

Two subroutines are assumed available for this pu~ose:
SQ~~T, which computes the square root of the C(AC) and
leaves the result in the AC, and SUMSQ, as in Example 10.5.

Locn. Ope~ Var. Field

CLA X x to AC
TSX SQR.0flJT,4
STflJ TEMP Store sq. root of x
LDQ Y
MPY Y

y2 STQ TEMP+l Store
LDQ X
MPY X
SCA

Form x2 - 2 SUB TEMP+l y
TSX SQRflJ.0T, 4
ST.0 TEMP+l
TSX SUMSQ,4

X
Y
Z
U
TEMP+2 (For result)

(Cant 'd.)

Locn.

TEMP
X
y
Z
U

Opere

CLA
ADD
ADD
ST,0
HTR

BSS

Var. Field

TEMP
TEMP+l
TEMP+2
F

3

The symbols SQR¢~T and SUMSQ must be defined.

In Section 8.4, it was pointed out that indirect
addressing may be used with tags on both the direct and
ind.irect addresses. This technique is illustrat(~d by an
example.

59

Example 10.7 The block at LISTA contains 100 numbers
whose cube roots are to be computedj the results are to
be pla6ed in the block at LISTB. Write a routine to per
form the operations, ma~king use of a CBR~.0T subroutine.

It 1s assumed that CBR~~T has two addresses in its
calling sequence, the address of the argument (to be cubed)
and the address for the result. A loop is established
containing the calling sequence. The addresses in the
calling sequence are tagged. Within the subroutine, a
flagged reference places one of the arguments in LISTA in
the ACj because of the tag, all arguments are fetched in
sequence.

Locn. Opere

AXT
BEGIN TSX

TIX
HTR

LISTA BSS
LISTB BSS

Var. Field

100,1
CBR~9iT,4
LISTA+IOO,l
LISTB+IOO,l
BEGIN, 1, 1

100
100

60
Within the subroutine, the argument is placed in the AC
and the result is subsequently stored in LISTB by the
instructions

CLA* 1,4

ST.0 2,4

{R)-------------------{196.4 - 196.5)---------------------

Oper.

TZE
TPL
TMI

Var. Field

5,4
6,4
7,4

Zero return
Positive return
Nega ti ve return

Chapter 11
INPUT-OUTPUT OPERATIONS

(S)-----------~---------(At 206.8)------------------------

Following are some examples of corrections cards used
with 7090 monitors:

octal correction card:
decimal correction card:

Locn. Opere

237 ¢CT
4420 DEC

Yare Field

050000211145
22,33,88

As the result of the first card, the octal word
050000211145, which corresponds to the instruction

CLA /.0/11145,2

is placed at location 00237, overwriting whatever was
there previously.

As the result of the second card, the integers 22,
33 and 88 would be placed at locations 04420, 04421, and
04422, respectively. The convention on the use of several
fields of a FAP DEC card applies to these correction cards.

(R)------------------(208.8 - 209.10)---------------------

ALPHANUMERIC INFORMATION
The 7090 BCD character codes are given in the accom

panying table. Six bits are used for each character. The
coding is done by the card reader to put information from
cards on tape or in memory. The codes listed apply to
characters in memory; in some cases, the codes on magnetic
tape differ. The code is generally termed binary-coded
decimal or BCD. For compactness, the codes are generally
expressed as 2-digit octal numbers, as in the table. The
term Hollerith is used synonomously with BCD.

61

62

BCD CHARACTER CODES

Character BCD code Character BCD code Character BCD code

0 00 D 24 Q 50
1 01 E 25 R 51
2 02 F 26 $ 53
3 03 G 27 * 54
4 04 H 30 (blank) 60
5 05 I 31 / 61
6 06 33 S 62
7 07) 34 T 63
8 10 40 u 64
9 11 J 41 V 65
= 13 K 42 W 66
It 14 L 43 X 67
+ 20 M 44 y 70
A 21 N 45 Z 71
B 22 ¢ 46 , 73
C 23 P 47 (74

(R)-------------------(210.7 - 211.1)---------------------

PSEUDO-OPERATIONS
The FAP assembler has two pseudo-operations for the

generation of alphanumeric information within a symbolic
program.

(1) BCI (binary-coded information). The first
character in the variable field of this pseudo-operation
is a decimal digit n, from 1 to 9. The second character
is a comma. The following string of 6n characters, if n
is in the range from 1 to 9, is stored by the assembler in
the n successive computer words at the point in the program
at which this card occurs. If n = 10, the comma must
appear in column 12, thus providing 60 columns (columns 13
through 72) for characters; '10 BCD words are then generated.
Thus, to store 6 words of BCD information, one writes

Lecn. Opere Var. Field

STRING BCl 6,T¢DAY THE DATE IS ¢CT¢BER 24, 1961.

The symbol STRING is assigned to the first word containing
this information, which is stored in STRING through
STRING+5. If the count n is insufficient to account for
the entire string, only the first 6n characters are stored
in n words. If the count is too large, blanks fill up
remaining space to a total of n words.

(2) BCD. This pseudo-operation is used in the same
manner as BCl, except that the comma is omitted. If

63

10 BCD words are to be generated, the character 0 must
appear in column 12, followed in column 13 by the start of
the string.

(M)-------------------(211.2 - 213.2)---------------------

(The material in 211.2 - 213.2 consists of a typical
approach to monitor input-output subroutine usa~e. Actual
usage varies a great deal among 7090 computers.)

Chapter 12
PROGRAM PLANNING

(R)-------------------(235.l - 235.4)---------------------

MINIMIZING RUNNING TIME
The time for each instruction to be executed, in

number of cycles, is indicated in the indiviaual instruc
tion descriptions. The 709 cycle time is 12 microseconds,
the 7090 cycle time is 2.18 microseconds, and the 7094
cycle time is 2 microseconds.

There are a few general rules that indicate the cycle
times of 7090 instructions. (1) Instructions involving
only the arithmetic unit registers (AC, MQ, XRs) require
1 cycle; examples are XCA, PAX, and PXA. In addition,
TRA, TMI, TPL, and AXT require 1 cycle. (2) Most instruc
tions require 2 cycles. (2) The CAS instruction and some
instructions requiring testing of each bit in the AC and/
or memory word require 3 to 4 cycles. (4) All floating
point instructions and fixed-point multiplication and
division require approximately 2 to 15 cycles, depending
on several factors.*

(R)-------------------(235.8 - 236.3)---------------------

MINIMIZING MEMORY SPACE
Example 12.2 Assume that, at location PUT in a

routine, the contents of the accumulator is to be stored
in BD,¢CK if the sequence is being used for processing a
list of 1000 numbers or more, and is to be stored in LIST
otherwise.

The decision on which version to use is made just
before its use. If the C(NUMBER) is nonzero, the version
containing the following instruction is used:

Locn. Oper. Var. Field

ST¢ LIST

*There are some reductions in these figures for the
7094 instructions.

64

The sequence to set the ST~ instruction is the follow
ing:

CIA
TZE
CIA
STA
TRA

ZER¢ CIA
STA

PAST . . .
PUT ST¢ . . .
W¢RDl
WORD2

NUMBER
ZER¢
W¢RDl
PUT
PAST
WORD2
PUT
· ..
• ••
**
· . .
LIST
BL¢CK

Test NUMBER .•.
transfer if zero

The routine

(R)-------------------(240.3 - 241.6)---------------------

DYNAMIC ALLOCATION
Example 12.3

are read initially
tions P, Q, and R.
words to blocks A,

(Refer to the
and an analysis.)

The coding to
of blocks required

Locn. Opere

CIA
ADD
ADD
ADD
ADD
ADD
ADD
CAS
TRA
TRA

Assume that the quantities p, q, and r
into memory from data cards, into loca-
Write a program that assigns blocks of

B, C, and D.
book for a description of this problem

accomplish the test on the total size
is the following:

Var. Field

P
P
Q
Q
R
R
R
TWELVE
T¢¢BIG
*+1

Form 2p+2q+3r

(Refer again to the book for further comments.)

66

ASSIGN CLA BEGINA
ADD ASIZE
ST0 BEGINB
ADD BSIZE
ST0 BEGINC
ADD CSIZE
ST0 BEGIND

BEGINA A
BEGINB **
BEGINC **
BEGIND **
A BSS 24000

(Refe r again to the book.)

(R)-------------------(243.1 - 244.10)--------------------

SHIFTING
ACCUMULATOR RIGHT SHIFT (ARS Y) (+0771); 2-4 cycles.

rr'he C (AC)Q, P" 1-3'1 a re shifted right Y bit positions. Bits
shifted past posItion 35 are lost. Vacated positions are
filled with zeros.

ACCUMULATOR LEFT SHIFT (ALS Y) (+0767); 2-4 cycles.
The C(AC)Q,P,1-3'1 are shifted left Y bit positions. Bits
shifted past posItion Q are lost. Vacated positions are
filled with zeros.

LOGICAL RIGHT SHIFT (LGR Y) (-0765); 2-7 cycles. The
C(AC)Q"P,l-~'1 and the C(MQ), considered as a single regis
ter, are shIfted right Y bit positions. Bits leaving
position 35 of the AC enter the sign of the MQ. The sign
of the AC is unchanged. Bits shifted past position 35 of
the MQ are lost. Vacated positions are filled with zeros.

LOGICAL LEFT SHIFT (LGL Y) (-0763); 2-7 cycles. The
C(AC)Q,P,1-~5 and the C(MQ), considered as a single regis
ter, are shIfted left Y bit positions. Bits leaving the
sign of the MQ enter bit 35 of the AC. The sign of the AC
is unchanged. Bits shifted past the Q position are lost.
Vacated positions are filled with zeros.

ROTATE MQ LEFT (RQL Y) (-0773); 2-4 cycles. The
C(MQ) are shifted left Y bit positions in an "end-around"
fashion. Bits shifted out of the sign reappear in po~i
tion 35. No bits are lost.

In addition to these shift instructions, there are
two others, LONG RIGHT SHIFT and LONG LEFT SHIFT, that are
similar to LOGICAL RIGHT and LOGICAL LEFT. In the LONG

shifts, only bits 1-35 of the AC and MQ shift. The sign
of the register that bits are shifted into is made to

67

agree with the sign of the other register, while the latter
is unchanged.*

Examples of shifting- operations follow.
If the C(AC) are (in binary)

QP
-11011000000110111000110101011111000110

then execution of the instruction

ARS 10

changes the C(AC) to

QP
-00000000001101100000011011100011010101

If the C(AC) and the C(MQ) are respectively (in
binary)

QP
+0000000011010110110000001010010000000

-00000100011010010111111111001001001

then execution of the instruction

LGL 24

changes the contents of these registers to

QP
+1010010000000100000100011010010111111

-11001001001000000000000000000000000

If the C(MQ) are (in octal)

+025044210776

*A long left shift (LIS) instruction with an address of 0
has the effect of moving only the MQ sign to the AC sign.
This means may be used in integer division for putting
the dividend sign in the AC. .

68

then execution of the instruction

RQL 27

changes the C(MQ) to

-376025044210

Note that the initial "-3" is actually 7.

MASKING
Masking is accomplished by the use of the following

logical instructions.
"AND" TO ACCUMULATOR (ANA Y) (-0320); 3 cycles.

Corresponding bits in the ACp,1-35 and location Yare
compared; where both contain a 1 In any position, the bit
in the AC is set to 1; where either or both are 0, the
bit in the AC is set to O. The C(Y) is unchanged. The S
and Q positions in the AC are set to zer91'

"AND" TO STORAGE (ANS Y) (+0320); 4 cycles. Corre
sponding bits in the ACp,1-35 and location Yare compared;
where both contain a 1 in any position, the bit in loca
tion Y is set to 1; where either or both are 0, the bit in
location Y is set to O. The C(AC) is unchanged.

As an example of the use of the ANA instruction, we
assume the following:

octal binary

C(AC)P,1_35 = 033200577740 = 000011011010000000101111111111100000

c(y) = 007777777400 = 000000111111111111111111111100000000

Then, execution of this instruction

ANA Y

changes the C(AC)P,1_35 to the following:

003200577440 = 000000011010000000101111111100000000

In this manner, any selected portion of the C(AC) may
be retained while other portions are masked out. The
ANS instruction operates similarly on a word in memory,
using the AC as a mask. The 36 bits in positions P and
1-35 of the accumulator comprise what is frequently called
the logical accumulator; the subscript "L" will be used to
refer to it. Positions Sand 1-35 comprise the arithmetic
accumulator, since those bits are involved in arithmetic.

69

(R)-------------------(245.3 - 246.9)----------------------

PACKING AND UNPACKING
Example 12.4 Four positive 9-bit integers are stored

in successive words starting at W,0RDS. Write a routine to
pack them into a single 36-bit word, PACKED. The C(W~RDS)
is to be placed in the leftmost 9 bits of PACKED, the
C(W~RDS+l) is to be placed in the next 9 bits, and so on.

The AC will be used to accumulate the four numbers]
they will be packed there from the right. To accomplish
this, each number will be placed in the leftmost portion
of the MQ and the AC-:-M,Q double register will then be
shifted left, to place the number in the AC. If this is
done four times, all four numbers will be packed in the AC]
the SLW instruction is used to store the result. A flow
chart appears in Fig. 12-1 below] this flowchart is a
computer flowchart for the 7090. An analysis of the
packing procedure follows the program.

Clear AC

1 -+ i

a i - left part MQ I

Shift AC-M~

Fig. 12-1. Flowchart for packing routine.

70
Locn. Opere Var. Field

PXA 0,0 Clear AC
AXT 4,1

GETWRD LDQ W0RDS+4,1 One number to MQ
RQL 27 Shift to left in MQ
LGL 9 Shift in AC
TIX GETWRD,l, 1
SLW PACKED
HTR

PACKED
W¢RDS ESS 4

The C(AC)L and the C(MQ) throughout the execution of
this program are listed below; the four loop cycles are
shown. The action of the TIX instruction is omitted;
effe~tive addresses are listed. The rour octal numbers
being packed are assumed to be 510, 327, 222, and 106.

Instruction C(AC)L C(MQ)

LDQ W0RDS 000000000000 000000000510
RQL 27 000000000000 510000000000
LGL 9 000000000510 000000000000

LDQ W0RDS+l 000000000510 000000000327
RQL 27 000000000510 327000000000
LGL 9 000000510327 000000000000

LDQ W0RDS+2 000000510327 000000000222
RQL 27 000000510327 222000000000
LGL 9 000510327222 000000000000

LDQ W0RDS+3 000510327222 000000000106
RQL 27 000510327222 106000000000
LGL 9 510327222106 000000000000

At the end of this sequence, the numbers are packed in the
AC L·

(R)------------------(247.2 - 247.9)----------------------

Example 12.5 Given a 72-character alphanumeric
string, stored in a block from STRING to STRING+ll (6 char
acters to a word), write a routine to unpack the string,
placing each character in the rightmost 6 bits of a word
in the block UNPAKD, in the order of appearance in the
string.

71

Each word in the STRING block must be unpacked, its
contents being placed in 6 words in UNPAKD. This requires
a loop of the form in Example 12.4, except that now
unpacking is required. This can be accomplished by loading
a word from STRING into the MQ and shifting the AC-MQ pair
left 6 bits, putting one character at the right of the AC.
After that is stored in UNPAKD and the AC is cleared,
another rotation puts the next character into the AC.
Surrounding this loop is an outer loop that fetches a new
word from STRING each cycle. After that word is unpacked,
the next word from STRING is placed in the MQ. A flowchart
appears in the book; that flowchart applies to the 7090
if "MQ" is subs ti tuted fa r "MR".

In this program, XRl and XR2 are used for the outer
and inner loop indices i and j, respectively. XR4 is used
as a pointer (k), indicating the next available location
in UNPAKD for an unpacked character. After each character
is stored, the AC must be cleared for the next one. (The
indexing discrepancy, described in Section 8.2 of the book,
should be recalled.)

Locn. Opere Var. Field

K SET 4
I SET 1
J SET 2

AXT 72,K
AXT 12,1

L~~Pl IDQ STRING+12,I
AXT 6,J

L~~P2 PXA 0,0
LGL 6
SLW UNPAKD+72,K
TXI *+l,K,-l Modify pointer
TIX L~~P2,J,1
TIX L~~Pl,I,l
HTR

STRING BSS 12
UNPAKD BSS 72

Chapter 13
NUMERICAL PROBLEMS

(R)-------------------{254.8 - 255.8)---------------------

FLOATING-POINT OPERATIONS
Floating-point numbers were described in Chapter 5.

In this form, the fraction parts are stored in bits 9-35
and the characteristics are stored in bits 1-8. Charac
teristics are formed by adding 2008 to the powers of 2 in
floating point form. Examples appear in Chapter 4 of the
book. If the number is written so that a 1 bit appears in
position 9 (at the left of the fraction) the number is
normalized.

To incorporate floating-point numbers into a FAP pro
gram, the DEC pseudo-operation is used with a decimal point
in each number field. The following instruction leads to
assembly of the integer 75:

Oper. Var. Field

DEC 75

This appears as +000000000113 (octal) in the program. The
following instruction leads to assembly of 75 as a normal
ized floating-point number:

DEC 75.

This appears as 207454000000 (octal) in the program.
Alternately, the exponential form described in Section 11.2
of the book may be used:

DEC . 75E+2

Regardless of the form given, provided a decimal point is
present, the number is assembled in normalized form.

In the following floating-point instructions, the
operands are treated as floating-point numbers (not
necessarily normalized). The results are normalized,
except at noted.

72

73

FLOATING ADD (FAD Y) (+0300); 6-15 cycles. The C(Y)
is added algebraically to the C (AC),and the sum is placed
in the AC and the MQ. The less significant half of the
sum is placed in the MQ and the more significant half is
placed in the AC; the characteristic of the MQ is 33e less
than the characteristic of the AC. The sign of the sum is
placed in both registers. The C(Y) is unchanged.

FLOATING SUBTRACT (FSB Y) (+0302); 6-15 cycles. The
C(Y) is subtracted algebraically from the C(AC), and the
difference is placed as the sum is in FLOATING ADD. The
C(Y) is unchanged

FLOATING MULTIPLY (FMP Y) (+0260); 2-13 cycles. The
C(Y) is multiplied algebraically by the C(MQ) and the
product is placed in the AC and the MQ; the product is
normalized if the original factors were normalized and not
necessarily otherwise. The less significant half of the
product is placed in the MQ and the more significant half
is placed in the AC; the characteristic of the MQ is set
as in FLOATING ADD. The sign of the product is placed in
both registers. The C(Y) is unchanged.

FLOATING DIVIDE OR HALT (FDH Y) (+0240); 3-13 cycles.
The C(AC) is divided algebraically by the C{Y), and the
quotient is placed in the MQ. The remainder is placed in
the AC. The quotient is normalized if the original
operands were normalized and not necessarily otherwise.
If the magnitude of the AC fraction is greater than or
equal to twice that of the fraction in Y, or if the magni
tude of the fraction in Y is zero, division does not occur,
the divide-check light is turned on, and the computer stopa

In addition to these floating-point instructions,
there are others as follows: instructions to add or sub
tract the magnitude of a number to or from the C(AC),
instructions to add, subtract, and multiply without
placing the result in normalized form, and a divide instruc
tion that lets the computer continue in sequence if divi
sion cannot occur.

(M)-------------------(255.8 - 256.4)--------------------

(The following comments apply to 255.8 - 256.4.)
In floating-point operations, the following corre

spondence of registers exists:

DELTA 63
MR
AC

IBM 709,0
AC
MQ

Thus, the result of the summation is

C(AC) = +212435710424 C(MQ) - +157222000000

Chapter 14
ALGEBRAIC LANGUAGES

(R)-------------------(267.4 - 267.7)---------------------

THE COMPILATION PROCESS
A FAP sequence that evaluates r is the following:

Oper.

LDQ
MPY
MPY
STQ
LDQ
MPY
XCA
SUB
TSX
SUB
XCA
DVP
DVP
STQ

Var. Field

A
C
F~UR
TEMP
B
B

TEMP
SQR¢~T,4
B

A
TW¢
R

74

OK if produc t
remains in MQ

Sq. root of C(AC);
resul t in AC

Chapter 15
NONNUMERICAL PROBLEMS

(S)---------------------(At 296.5)------------------------

NONNUMERICAL CONCEPTS
The following logical instructions are available to

perform the operations described in the book.
"OR" TO ACCUMULATOR (ORA Y) (-0501); 2 cyc Ie s .

Corresponding bits in the logical AC and location Yare
compared; where either or both contain a 1 in any posi
tion, the bit in the AC is set to 1; where both are 0,
the bit in the AC is set to O. The C(Y) and the Sand
Q positions in the AC are unchanged.

"OR" TO STORAGE (ORS Y) (-0602); 2 cyc Ie s . Corre
sponding bits in the logical AC and location Yare
compared; where either or both contain a 1 in any position
the bit in location Y is set to 1; where both are 0, the
bit in location Y is set to O. The C(AC) is unchanged.

COMPLEMENT MAGNITUDE (C OM) (+0760, 6); 2 cyc Ie s . * All
l's are replaced by 0 and all O's are replaced by 1 in
the C(AC)Q P l-~~. The sign of the AC is unchanged.

LOGI~AL'COMPARE ACCUMULATOR WITH STORAGE (LAS Y)
(-0340); 3 cycles. The C(AC)Q,p 1-3~ and the C(Y) are
compared, both considered as unsignea numbers If the
C(AC) is greater than the C(Y), the computer executes
the next instruction in sequence If the C(AC) equals the
C(Y), the computer skips the next instruction and proceeds
from there. If the C(AC) is less than the C(Y), the
computer skips the next two instructlons and proceeds from
there.

*The operation code of this instruction consists of +0760
in bits Sand 1-11 and, an addition, 00006 in bits 21-35;
both numbers must be present. This format is true of
several 7090 instructions; all of these have either
-0760 or +0760 in the leftmost 12 bits. None of these
instructions makes any references to memory.

75

76
The CAL, SLW, ANA, and ANS instructions introduced in

Chapters 7 and 12 and the four instructions above are
termed logical instructions. Each refers to the logical
accumulator (bits P and 1-35), treating those 36 bits and
the 36 bits of a memory word as unsigned numbers.

(R)-------------------(297.4 - 298.10)--------------------

ANALYSIS OF SYMBOLIC EXPRESSIONS

Example 15.1 Write a routine that analyzes a symbolic
expression, placing each symbol and each operator in
sequence in a list, one to a word. Only expressions
involving symbols, "+",and "-" need be considered.

The problem is flowcharted in Fig. 15.1 here. After
the string is unpacked and stored in LIST, one character
at a time is brought into the AC (at the right). The
character is examined; if it is an operator ("+" or "-"),
then a symbol has just ended; that symbol is to be stored
in NEWLST. At that point, the operator can also be stored
in NEWLST. If the character examined is a letter, it is
shifted within the AC so that it can be stored in SYMB¢L,
where the symbol, letter by letter, is reconstructed. With
each additional letter within the symbol, the amount of
the shift decreases (6 bits at a time) so that each letter
can be properly placed. This varying shift is accomplished
by a tagged ALS instruction; XR4 is used for this purpose
and is modified by 6 after each shift. The symbol letters
are combined by use of the ¢RS instruction, which "or"IS
each letter to SYMBf2!L. When a blank is encountered, the
process stops, after the last symbol is stored.

Each character is examined to see if it is (a) a let
ter, (b) an operator, or (c) a blank. The last two
possibilities are checked by testing for (c) BCD 20 ("-")
or 40 ("+") and (c) BCD 60 (blank). Any other possibility
is treated as a letter. In the program below, it is assumed
that unpacking into LIST has been completed, characters
stored at the right. A pointer (XR2) is used to indicate
the next available space in NEWLST. LIST is assumed to be
100 words long.

Start

Unpack complete expression

Shift k
bits left;
store letter

1 -. i

1 -. j

30 -. k

Test one char.

Operator
(+, -)

Store symbol
and operator

j + 2 -. j
30 -. k

Blank

Store
symbol

Stop

Fig. 15.1 Flowchart of symbolic expression analysis.

77

78
Locn. Opere

AXT
AXT

L~~P AXT
STZ

NEXT CAL
LAS
TRA
TRA
LAS
TRA
TRA
LAS
TRA
TRA
ALS
~RS
TXI
TXI

~PER SLW
CAL
SLW
TXI
TXI

BLANK CAL

BLANKT
PLUS
MINUS
SYMB~L
LIST
NEWLST

SLW
HTR

BCI
BCI
BCI

BSS
BSS

Var. Field

100,1
100,2
0,4
SYMB~L
LIST+IOO,l
BLANKT
*+2
BLANK
PLUS
*+2
~PER
MINUS
*+2
~PER
30,4
SYMB~L
*+1,4,6
NEXT,l,-l
NEWLST+IOl,2
SYMB¢L
NEWLST+ 100,2
*+1,2,-2
L~~P,l,-l
SYMB~L
NEWLST+IOO,2

1,00000
1,00000+
1,00000-

100
100

Set i
Set j
Set k
C lea r symbo 1
Fetch 1 character
Test for blank

no
yes

Test for +
no
yes

Test for -
no
yes

Here if letter

k-6 to k
i+l to i; go back
Store operator

Store symbol
j-2 to j
i+l to i; go back

Store symbol

At the end of this program, the symbols in NEWLST are
left-adjusted, that is, they are stored at the extreme
left of the words in NEWLST. If it is desired that they be
stored right-adjusted, then the complete symbol must be
shifted right before it is stored in NEWLST. Because XR4
begins at 0 and is decreased by 6 for each letter in a
symbol~ the amount of the final shift needed for right
adjusting is 36 - C(XR4) at the time of storing. For
example, if a symbol has 4 characters, the c(xR4) will be
24 at the time. the symbol is to be stored; a right shift
of 12 bit positions will right-adjust the symbol. There
fore, the insertion of the following instruction just after
the two CAL instructions that place the C(SYMB¢L) into the
AC accomplishes the right-adjusting:

ARS 36,4

79
(M)--------~-----------(299.3 - 299.8)---------------------

(The following comments apply to 299.3 - 299.8.)

PACKING BINARY INFORMATION
To effect the packing, each word is placed in the MQ

and the following two instructions are executed as a pair
six times (after the AC is cleared):

RQL 5
LGL 1

If this is done with the 36-bit word given, the right part
of the AC will look as follows (in binary):

... 0000000000110100

(R)--------------------(299.8 - 300.2)---------------------

Exam Ie 1 .2 The program below takes 6 words of BCD
O's and lIs in BITS to BITS+5) and packs them into one
word, BITPAK.

Locn. Oper. Var. Field

AXT 6,2
NEWWRD LDQ BITS+6,2 Next word to MQ

AXT 6,1
NWCHAR RQL 5 Next character to AC

LGt 1
TIX NWCHAR,l,l
TIX NEWWRD,2,1
SLW BITPAK
HTR

(R)~-------------------(301.2 - 301.7)---~----------------

CODING ALPHANUMERIC INFORMATION
Example 15.3 The following program codes the C(TERM)

and puts the code in C~DTRM. If the C(TERM) is not found
in the list, control will pass to ERR0R.

80

Locn. Opere Var. Field

AXT 160,1 Table has 160 entries
CAL TERM

i th entry AGAIN LAS TABLE+150,1 Compare with
TRA *+2
TRA F¢UND Found term
TIX AGAIN, 1,1
TRA ERR¢R Tra if not in table

F¢UND CAL C¢DTBL+160,1 Fetch ith code
SLW C¢DTRM . . . ·

TABLE BCI 1,TRIANG
BCI 1, SQUARE
BCI 1,RECTAN
BCI 1, PARALL

·
C¢DTBL ¢CT 20

¢CT 21
¢CT 23
¢CT 30

·
Here, the code for "TRIANGLE " is 20, the code for "SQUARE"
is 21, etc.

(S)-------~--------------(At 302.1)-----------------------

NONNUMERICAL CONCEPTS
The following logical instruction is useful in

nonnumerical problems
EXCLUSIVE "OR" TO ACCUMULATOR (ERA Y) (+0322);

:3 cycles. Each bit in Y is matched with the corresponding
bit in the logical accumulator. Where corresponding bits
match, a 0 replaces the bit in the accumulator; where
corresponding bits do not match, a 1 replaces the bit in the
accumulator. The C(Y) is unchanged.

For example, if

the C(AC)L = 011100001010000111111100001100001000

the (Y) = 000000011111000011101010110001111000

then execution of the ERA instruction places this result in
the AC:

011100010101000100010110111101110000

This instruction may thus be used to identify the matching
bits in two words.

81

The following instruction tests the status of the
P-bit.

P-BIT TEST (PBT) (-0760,1); 2 cycles. If the C(AC)p
is 1, the computer skips the next instruction and proceeds
from there. If the C(AC)p is 0, the computer continues
in sequence.

The 7090 computer has a special 36-bit register, the
sense indicator (SI) register. The following instructions
treat the register as switches which may be logically
treated and tested individually or in groups.

LOAD INDICATORS (LOI y) (+0441); 2 cycles. The C(Y)
replaces tbe C(SI). The C(Yl is unchanged.

STORE INDICATORS (STI Y (+060L~); 2 cycles. The C(SI)
replaces the C(Y). The C(SI is unchanged.

PLACE ACCUMULATOR IN INDICATORS (PAl) (+0044); 1 cycle.
The C(AC)L replaces the C(SI). The C(AC) is unchanged.

ON TEST FOR INDICATORS (ONT Y) (+0446); 4 cycles. For
each bit in the C(Y) that is 1, the corresponding bit in
the SI is examined. If all the examined positions in the
SI contain a 1, the computer skips the next instruction
and proceeds from there. If any of the examined positions
does not contain 1, the computer takes the next instruction.
The C(Y) and the C(SI) are unchanged.

Another way of stating the operation of ONT is to say
that, considering the C(Y) and C(SI) as ordered 36-bit
sets, the computer skips the next instruction if and only
if the C(SI) covers the C(Y), i.e., if the SI has l's
wherever Y has lIS. Thus, if

the C(SI) = 000001110100000001111000101000000000

then a skip occurs in cases (a) and (b), but not (c):

case (a): C(Y) = 000001110000000000000000101000000000

case (b): C(Y) = 000000010000000001111000000000000000

case (c): C(Y) = 110001110000000001000000001000000000

These and the other SI instructions have many applica
tions, of which the following is but a simple example:

Generalize the PBT instruction to permit a test for 1
in any bit of the logical accumulator; let BITWRD contain
a 1 in the desired test position and 0 elsewhere. The
desired sequence:

Opere

PAl
¢NT

Var. Field

BITWRD
C(AC) to SI
Test word

82

By using other bit patterns in BITWRD, any set of
lIs can be tested for.

Another SI instruction of interest is the following.
INVERT INDICATORS FROM ACCUMULATOR (IIA) (+0041);

1 cycle. Each bit of the logical accumulator is matched
with the corresponding bit of the SI. Where a bit in the
AC is 1, the contents of that position in the SI is
unchanged. The C(AC) is unchanged.

The effect of the IIA instruction is to place the
exclusive or of the C(AC) and the C(SI) into the SI, just
as the ERA instruction places the exclusive or of the C(Y)
and C(AC) into the AC.

(R)------------------(307.7 - 311.7)----------------------

NIM

Example 15.4 Write a program to make a Nim move; if
the position presented is even, make a "random" move by
removing one coin from the first nonzero group; if the
position presented is odd, make a move to create an even
position.

A large range of positions will be accepted; up to
35 bits may be present in each count (i.e., 235 - 1 is
the maximum count), and up to 1000 groups of coins may be
present. While these limits are extraordinarily high,
coding this case is no more difficult than coding a 5-group
game with count limits of 20.

The counts are present in the block starting at
C¢UNTS; the number of groups (n) is located in GRPNUM. The
counts are stored internally in binary form (since the 7090
is a binary computer), which makes a good deal of the
coding simple. C¢LUMN is used to indicate the columns
requiring change; each bit position corresponds to one
column, and 1 indicates a change. LEFC¢L is used to indi
cate the leftmost column requiring change.

The program is coded in several stages. In the first
stage, steps 1 and 2 are coded. To determine which columns
have an odd number of l's, the ERA instruction is very
useful.

Consider one column, say position 35, in each word
containing a count. Imagine that the first word is com
bined with the cleared AC by the ERA instruction. If the
word contains a 1 in bit 35, that position in the AC becomes
1, otherwise it remains O. In fact, as a series of words
is successively combined with the AC (which contains the
result of all previous combinations), that bit will remain
o until the first 1 (in bit 35) occurs in a word. Then,
as more words are combined with the AC, that bit remains 1
until another 1 occurs in a word. In summary, the number

83

in bit 35 in the AC indicates, at all times, whether an
odd number (1) or an even number (0) of lIs has occurred
in that position. The same reasoning applies to all bit
positions.

Locn. Opere Var. Field

CLA XC¢UNT Set address
ADD GRPNUM
STA GET (Other addresses also
LXA GRPNUM,l set here)
PXA 0,0 Clear AC

GET ERA **,1 (C¢UNTS+n)
TIX GET,l,l
SLW C,0LUMN

XC¢UNT CJ2jUNTS

At the end of the first stage, the columns requiring
change are indicated by lIs in C¢LUMN. The second stage
consists of the coding for step 3 and contains two parts
3a: determination of the leftmost column to be changed,
and 3b: determination of the first row with al in that
column. To code 3a, the C(C¢LUMN) are placed in the AC
and shifted left one bit position at a time until the
P-bit becomes 1. XRl is used for loop control and when the
P-bit is 1, XRl "points" to the leftmost column. For
example, if the leftmost 1 was in bit 20, that bit moves
to position P after 20 left shifts and the C(XRl) then
decreases to 15 from its original 35. The proper word from
a table of single bits, BITS, can then be selected by XRl
and stored in LEFCJ2jL. Part 3a is coded below; 3b is coded
later.

Provision is made here for the even-position possibil
ity (Fig. 15.4 in the book); if the loop is cycled 35 times
and position P is never 1, then no lIs are present in
C¢LUMN and no columns require change.

84

Locn. Opere Var. Field

AXT 35,1
CAL C~LUMN

SHIFT ALS 1 Shift left 1 bit position
PBT Test P-bit
TRA *+2 Go on if 0
TRA LEFTC Tra when 1
TIX SHIFT,l,l
TRA EVEN T ra . if noll s

LEFTC CAL BITS+35,1 Fetch proper bit
SLW LEFC~L

BITS ~CT 200000000000 1 in bit 1
~CT 100000000000 1 in bit 2
9JCT 040000000000 1 in bit 3

To code 3b, each row count is checked to see if it
has a 1 in the hit identified in LEFC¢L. This is done by
loading each count into the AC, masking with the C(LEFC9JL)
and transfering out on a nonzero AC. If the AC is nonzero,
a 1 must be present in the count just tested in the proper
position. Now, XRl is used to point to the count to be
modified.

Locn. Opere Var. Field

LXA GRPNUM,l
GETBIT CAL **,1 (Must be set as in first

ANA LEFC~L stage) (COUNTS+n)
TNZ F~UND Tra when count with bit
TIX GETBIT,l, 1 found

F,0UND . . . XRl still points to count
to be modified.

In the third stage of the program, step 4 is coded.
Here, the number of coins to be removed from the selected
row must be determined. Actually, what is required is
the new count; the actual number of coins removed need not
be computed. The sense indicators are useful here; the
IIA instruction performs precisely the required operation:
inverting a selected set of bits within a word.

85

Locn. Opere Var. Field

F¢UND LDI
CAL
IIA
STI
TRA

** 1 ,
C¢LUMN

(Must be set ... (C¢UNTS+n))
Cols to be changed to AC

** 1 ,
PRINT

(C¢~TS+n)

PRINT is a routine that prints the counts after the program
has calculated the move. If the computer is to play
against a man, it must inform him of its move. Somehow,
then, the man must inform the computer of his move. This
can be done by supplying new data cards each time or by
entering the move into the console keys. In any event,
the modified count is placed in the C¢UNTS block and con·
trol goes to the start of the program.

One other routine is needed; in the event that the
program finds an even position, it is to make a "random"
move: remove one coin from the first nonzero group.

Locn. Opere Var. Fie Id

EVEN LXA GRPNUM,l
CLA **,1 (C¢UNTS+n)
TNZ EVENl
TIX EVEN+l,l,l
TRA ALLD¢N Tra if all are zero

EVEN 1 SUB ¢NE
ST¢ ** 1 (C¢UNTS+n) ,
TRA PRINT

¢NE DEC 1

ALLD~N is a rqutine that prints an appropriate comment.

(R)------------------(316.1 - 317.3)---------------------

OTHER TYPES OF LISTS
In order to place three subfields into a word, the

address, tag, and decrement fields of an instruction can
be used, provided the desired subfields have 15, 3, and
15 bits, respectively. If the operation field is left
blank, zeros are assembled into the prefix, i.e., bits S,
1, and 2; alternately the pseudo-operation PZE (Qlus ~ero)
may be used for the same purpose. (There are other,
similar pseudo-operations that cause the 7 other possible
prefixes to be assembled; these are P¢N (plus one),
PTW (plus two), PTH (plus three), M¢N (minus one), etc.)

S6
Thus the following correspondences exist within FAP:

Ma chine word Symbolic instruction

0 02215 2 11002 PZE LIST,2,W,0RD

0 02215 0 11002 LIST, ,WORD

-2 11002 1 00277 MTW W.0RD, 1, NAME

Exam;Q1e 15.5 Refer to the book for a description of
the list structure used. Tag fields are used here to hold
codes.

Location Contents Location Opere Var. Field

01000 0 01004 3 01001 LO PZE L1, 3, L4
01001 0 01007 1 01002 Ll PZE L2,1,L7
01002 0 01003 2 01010 L2 PZE LS, 2, L3
01003 0 01012 4 01011 L3 PZE L9,4,L10
01004 0 01006 1 01005 L4 PZE L5, 1, L6
01005 0 01014 3 01013 L5 PZE L11,3,L12
01006 0 01016 4 01015 L6 PZE L13,4,L14
01007 0 00000 7 00115 L7 PZE ABC,7
01010 0 00000 7 00400 LS PZE NAME, 7
01011 0 00000 7 42000 L9 PZE LIST,7
01012 0 00000 7 00221 L10 PZE W.0RD,7
01013 0 00000 7 03300 L11 PZE X1,7
01014 0 00000 7 03301 L12 PZE X2,7
01015 0 00000 7 03305 L13 PZE X3,7
01016 0 00000 7 03310 L14 PZE x4,7

(R)------------------(320.1 - 320.4)----------------------

INTEGER CONVERSION

Exam;Q1e 15.6 Let a block of integers ni(l ~ ni ~ No
for i = 1,2, •.. ,k) be located starting at BL,0CK. It is
desired to classify them by assigning a class number Ct to
each. To perform this classification, the integer ni (the
argument) is placed in XR2 and the number ci, located in
the (mi-l)th word from the end of a block at TABLE, is
fetched. This number is stored in the nith position of a
parallel table, CLASS. No is assumed to be 100.

87

Locn. Opere Var. Field

CLA XBL¢CK Set addresses
ADD K
STA ARG
CLA XC LASS
ADD K
STA PUT
LXA K,l

ARG CLA **,1 (BL¢CK+k)
PAX 0,2 Put argument in XR2
CLA TABLE+IOO,2

PUT ST¢ **,1 (CLASS+k)
TIX ARG,l,l

XBLOCK BL0CK
XC LASS CLASS
K

In this problem, the argument domain is 100 (No) in
size and a table (TABLE) of that size contains the numbers
ci. These numbers cover the image range. A limitation to
this method is the maximum size of No permitted, since a
table of that size is required.

(R)------------------(320.6 - 321.5)----------------------

PATTERN DETECTION
Exam~le 15.7 Count all appearances of bits "1011"

and "0100 in the block of 50 words starting at PATTRN,
and place these counts in CNTRI and CNTR2, respectively.
Consider each word to consist of nine 4-bit bites.

The arguments are numbers from 0 to 15 inclusive;
these are the decimal numbers represented by the 16 dif
ferent bites. A transfer of control is made to one
address in a 16-word table, depending on the argument. In
all but two of these locations, a transfer is made immed
iately back to the main subroutine. In the other two,
transfers are made to counting routines, after the execu
tion of which control is returned to the main routine.

Locn.

L0¢Pl

L¢¢P2

0UT

Opere

AXT
LDQ
AXT
PXA
LGL
PAX
TRA
TIX
TIX

Var. Field

50,1
PATTRN+50,1
9,2
0,0
4
0,4
TABLE+16,4
L¢¢P2,2,1
L¢¢Pl,l,l

Put a word in MQ

Clear AC
Put 1 bite in AC

(TABLE is defined be low)

88

14 of the 16 instructions in the block at TABLE are
the following:

TRA ¢UT

These correspond to the 14 different bites that are not
processed. The other two instructions are

TRA C¢UNTI
TRA C¢UNT2

which occupy the sixth and eleventh words from the end of
the block, corresponding to the two patterns to be
processed. The routine at C¢UNTI is

C¢UNTl CLA
ADD
ST¢
TRA

CNTRI
¢NE
CNTRl
¢UT

The routine at C¢UNT2 is similar.

Add 1 to CNTRI

(S)--------------------(At 322.0)------------------------

PLACE COMPLEMENT OF ADDRESS IN INDEX (PAC) (+0737);
The 2's complement of the C(AC)2l-~S replaces the contents
of the specified index register. Tne C(AC) is unchanged.

(R)------------------(322.1 - 322.7)----------------------

Example 15.8 Refer to the book for a description and
analysis of this problem. In this program, k, the number
of integers, is taken to be 500. The maximum value of
the numbers is taken to be 10000. The complement of each
integer 1s placed in XR2 so that the indexing on the ST¢
instruction places ni in LIST+n i .

Locn. Oper. Var. Field

AXT 500,1
L¢¢Pl CLA BL¢CK+500,1 Fetch an integer

PAC 0,2 Place in XR2, comp lemented
ST¢ LIST, 2 Store in LIST
TIX L¢¢Pl,l,l

This loop constitutes the integer-ordering process. Note,
for example, that the number 45 is stored in LIST+45,
873 is stored in LIST+873, etc. The zero-removal routine
is the following:

L¢¢P2

AXT
AXT
CLA
TZE
ST¢
TXI
TIX

10000,1
10000,2

. LIST+IOOOO,l
*+3
LIS'r+10000,2
*+1,2,-1
L¢.0P2,1,1

Fetch a number

Move if nonze ro

The two XR's act as pointers here; XRl also serves for
loop control. XRl points to the number being tested;
XR2 points to the next available location for its final
position. The presence of a zero (indicating a missing
value) leaves XR2 unchanged, so that each nonzero number
is stored in a successive position in the list. A count
of the number of entries in LIST is given at the end by
10000 - C (XR2) .

89

Chapter 16
DATA PROCESSING

(S)---------------------(At 331.10)----------------------

CONVERSION
The 7090 computer has three special instructions

useful in the conversion of information in one form to an
other form. These convert instructions treat each 36-bit
word as a set of six 6-bit bites, operating upon each bite
in sequence. One of the instructions follows.

CONVERT BY ADDITION FROM THE MQ (CAQ Y) (-0114).;
2-8 cycles. The MQ is considered to consist of six 6-bit
quantities; these may be designated as follows: Ll:
Bits Sand 1-5; L2: bits 6-11; ... ; L6: bits 30-35. An
effective address Y + Ll is formed and the C(Y+Ll) is added
to the ACQ,p 1-35 (the sign is unchanged). Then the C(MQ)
is rotated six positions to the left. As a next step, a
new effective address Y' + L2 is formed, where
Y' = C(Y+Ll)21-35, and the C(Y'+L2) is added to the AC.
Then the MQ is rotated six more positions to the left.
This process occurs n times, n being the C(INSTR)10-17,
where INSTR contains the CAQ instruction.

Examples of the use of the CAQ and the other two 7090
convert instructions aftpear in the IBM manuals, under
"Programming Examples. I Other uses are given below in
Examples 16.2 and 16.3A.

Within FAP, the count is designated as the third sub
field in the variable field.

(R)-------------------(332.2 - 333.10)--------------------

Example 16.1 Write a routine to convert alphanumeric
octal information to binary form.

This conversion process is a simple one and does not
benefit particularly from the use of CAQ. Refer to the
book for an analysis. Here, the number to be converted is
placed initially in the MQ. The converted word remains in
the AC.

go

Locn. Opere

Lf2j.0P

AXT
PXA
RQL
LGL
TIX

Var. Field

6,1
0,0
3
3
*-2,1,1

91

Zero AC

Example 16.2 Write a routine to convert alphanumeric
decimal information to binary form. A number in DIGITS is
to be converted; the result is to be stored in SUM.

The CAQ instruction can be used to great advantage,
since it permits a sum of numbers to be accumulated rapidly
as the result of a series of table references. Consider
a BCD word containing an integer: 002258. The number can
be calculated by summing 8XIOO, 5XIOl, 2XI02, and 2xl03.
For this purpose, six tables of 10 words each are required.
The address fields of the words in these tables each con
tain the head of the following table, so that reference is
made in succession to the six tables. The decrements of
the first table contain the 10 digits from ° to 9. The
decrements of the second table contain the numbers 0, 10,
20, ... , 90. The decrements of the sixth table contain
the numbers 0, 100000, 200000, ... , 900000. The addresses
of the sixth-table words are irrelevant. (Special care is
required that the sum of the six addresses from the table
does not overflow into the left part of the AC, where the
sum is accumulated. This overflow can never extend past
the decrement for a count of 6.)

Locn. Opere Var. Field

IDQ DIGITS Load number in MQ
PXA 0,0
CAQ CTABLE, ,6
ARS 18 Place sum in address field
SLW SUM

92
The table begins as follows, where 00500 is the

address of CTABLE:

Location Contents

00500 0 00000 0 00512 CTABLE PZE CTABLE+IO"O
00501 0 00001 0 00512 PZE CTABLE+ 10, , 1
00502 0 00002 0 00512 PZE CTABLE+IO, ,2
00503 0 00003 0 00512 PZE CTABLE+IO, ,3
00504 0 00004 0 00512 PZE CTABLE+IO,,4
00505 0 00005 0 00512 PZE CTABLE+IO, ,5
00506 0 00006 0 00512 PZE CTABLE+IO, ,6
00507 0 00007 0 00512 PZE CTABLE+IO, ,7
00510 0 00010 0 00512 PZE CTABLE+IO, ,8
00511 0 00011 0 00512 PZE CTABLE+IO, ,9
00512 0 00000 0 00524 PZE CTABLE+20,,0
00513 0 00012 0 00524 PZE CTABLE+20,,10
00514 0 00024 0 00524 PZE CTABLE+20,,20

Example 16.3 Write a routine to convert binary
numbers to alphanumeric decimal 'form.

This is the reverse of the process in Example 16.2,
but it is not possible to program the problem in the
opposite manner. Instead, a simple approach is obtained
by using the repeated division process described in
Section 4.2. Arithmetic must be done in binary; in a
binary machine this is automatic. The remainders are saved
in binary, which happens to be their BCD form, since all
remainders are digits. The number to be converted is
located in NUMBER. A 35-bit number may contain as many as
11 decimal digits, when converted.

Locn. Oper. Var. Field

AXT 11,1
LDQ NUMBER
PXA 0,0
DVP TEN
ST,0 LIST+ll,l Store remainder
TIX M,0RE, 1, 1

After execution of this routine, the 11 digits are stored
in sequence in the block at LIST, with the low-order digit
in LIST. A packing routine can place them in two words;
they will then be in BCD form.

93

(S)---------------------(At 334.2)------------------------

CONVERSION
The following instruction is useful in the conversion

of 6-bit bites to other 6-bit bites.
CONVERT BY REPLACEMENT FROM THE MQ (CRQ Y) (-0154);

2-8 cycles. This instruction is similar to CAQ in its
execution, except that the leftmost 6 bits (s and 1-5) of
the referenced words replace the 6-bit quantities in the
MQ, Ll, L2, ••. , L6. As before, the MQ is rotated six
positions left after each such substitution. The count n
applies as in CAQ.

Example l6.3A* Write a program that scans the
100 words starting at LIST and makes the following BCD sub
stitutions:

replace all even digits by X;
replace all vowels by Y;
leave other codes unchanged.

The program is the following:

Locn. Opere Var. Field

AXT 100,2
L¢¢PS LDQ LIST+lOO,2 Word to MQ

CRQ TABLE, ,6 Convert word
STQ LIST+lOO,2 Store word
TIX L¢¢PS, 2,1
HTR

In addition, a table is required which contains the new
BCD codes in bits 1-6 and the address of the table (i.e.,
TABLE) in all address fields.
. To create such a table, the FAP pseudo-operation VFD
is useful. As an example of its use, consider

Locn. Opere Var. Field

PLACE VFD H6/x,15/,15/NAME

*This example has no counterpart in the book.

94

Here, the items in the variable field mean the following:
generate a 36-bit word at PLACE with its first 6 bits the
Hollerith X, its next 12 bits ignored (zeros), and its
next 12 bits the equivalence of the symbol NAME.* The
table thus begins as follows:

TABLE VFD H6/x,15/,15/TABLE 0
VFD H6/l, 15/, l5/TABLE 1
VFD H6/x,15/,15/TABLE 2
VFD H6/3, 15/, l5/TABLE 3
VFD H6/x,15/,15/TABLE 4
VFD H6/5, 15/, l5/TABLE 5
VFD H6/x,15/,lS/TABLE 6
VFD H6/7, lS/, IS/TABLE 7
VFD H6/x,15/,lS/TABLE 8
VFD H6/9,15/,lS/TABLE 9
BSS 1 nil
VFD H6/=,15/,15/TABIE =
VFD H6/",lS/,lS/TABIE "
BSS 3 3 nils
VFD H6/+,lS/,lS/TABIE +
VFD H6/Y,lS/,15/TABLE A
VFD H6/B, lS/, 15/TABIE B
VFD H6/c, 15/, IS/TABLE C

(R)-------------------(338.7 - 340.2)--------------------

SORTING (ORDERING)
TRANSFER ON LOW MQ (TLQ Y) (+0040); 2 cycles. If the

C(MQ) is algebraically less than the C(AC), the computer
takes its next instruction from location Y. If the C(MQ)
is algebraically greater than or equal to the C(AC), the
computer continues in sequence.

Example 16.4 Write a routine to perform an inter
change sort of 100 n~Nbers, located starting at NUMBRS.

Let ti be the i location in the list. During the
first pass, the first comparison is made between the C(tl).
and the C(t2), and the last compari~on is made between
the C(t9g) and the C(tlOO). The i comparison is made
between the C(ti) and the C(ti+l); i runs from 1 to 99.
In the program, the index, as given by the C(XR1), runs
initially from 99 to 1, then on succeeding passes runs
from 99 to limits that increase by 1 each pass. This is

*Refer to a FAP manual for more details on VFD.

95

accomplished by modifying the test instruction (TXH) after
each pass through the numbers. The whole process term
inates when XR2 is reduced to 1, after the 99th pass. The
AC and MQ are used for comparison and exchange. The
following routine places the smallest number first.

Locn. ,Pper.

CLA
STD
AXT

NEWPAS AXT
NEWNUM LDQ

CLA
TLQ
STQ
ST.0
TXI

TEST TXH
CAL
ADD
STD
TIX . . .

DECRl .0CT
ZER.0
NUMBRS BSS

Var. Field

ZERO
TEST
99,2
99,1
NUMBRS+99,1
NUMBRS+IOO,l
N.0EX
NUMBRS+IOO,l
NUMBRS+99,1
*+1,1,-1
NEWNUM,l,**
TEST
DECRl
TEST
NEWPAS,2,1

1000000

100

Initialize test

Start new pass
ti to MQ
ti+l to AC
ti+l greater; no exch.

Test for last number
Modify test; add 1 to

decrement

1 in decrement

(M)-----------------~-(340.2 - 340.5)---------------------

The book discusses, in 340.2 - 340.5, the efficiency
of this sorting procedure. The following instruction can
be inserted in the program to test for an interchange in
a given pass:

STZ INDIC

(R)-------------------(341.1 - 341.10)-------------------

MERGING

Example 16.5 Write a routine to merge the lists in
the blocks at LISTl and LIST2 of sizes m and n, respec
tively, forming a single ordered list, NEWLST. The
original lists have no more than 1000 numbers each.

The flowchart in Fig. 16.3 in the book shows the
process. The entries in LISTl are ai; the entries in
LIST2 are bj; the locations in NEWLST are tk. XRl and
XR2 act as pointers to the two original lists; XR4 acts
as a pointer to NEWLST.

96

In order to insure that trouble does not occur when
either list is exhausted, an extra number is assumed
present at the end of each list. This number exceeds any
number in the list and is not counted (in the counts m
and n). When m + n numbers are merged and the process
stops, these numbers are ignored. At the end of the
merging process, a dummy number (in LARGE) must be attached
to the end of NEWLST.

Locn. Opere Var. Field

CLA X2001 Form 2001-m-n· ,
SUB M set into test instr.
SUB N
ALS 18
STD SET
AXT 2001,4
AXT 1001,1
AXT 1001,2

NEXT CLA LIST1+I001,1 Compare a i and b j LDQ LIST2+1001,2
TLQ SMALL2

SMALLl ST,0 NEWLST+2001,4 Store a i (smaller)
TXI M,0D,l,-l

SMALL2 STQ NEWLST+2001,4 Store b j (smaller)
TXI M,0D,2,-1

M,0D TXI *+1 4 -1 , ,
SET TXH NEXT,4,** (2001-m-n)

CLA LARGE Store large number
ST,0 NEWLST+2001,4 (dummy) at end
HTR

M
N
LARGE ,0CT 377777777777
X2001 DEC 2001
LISTl BSS 1001
LIST2 BSS 1001
NEWIST BSS 2001

Chapter 17
MACRO-INSTRUCTIONS

(S)---------------------(At 348.10)-----------------------

MACRO-INSTRUCTION PSEUDO-OPERATIONS
The pseudo-operations described here are all available

in BE-FAP, Bell Telephone Laboratories' version of FAP.
They are not all available in other 7090 assemblers, while
other features, not here described, may be present in other
systems.

(R)-------------------(349.0 - 349.9)---------------------

Example 17.1 Define and use a macro-inst'ruction that
sums three numbers and stores the result.

The macro-definition:

Locn. Opere Var. Field

SUM3 MACRO A,B,C,S
CLA A
ADD B
ADD C
ST~ S
END

This macro-instruction sums the C(A), C(B), and C(C), and
stores the sum in S.

Consider this macro-call:

SUM3 WORD, DIGIT, NUMBER, RESULT

This call expands into-the following sequence:

CLA. W.0RD
ADD DIGIT
ADD NUMBER
ST.0 RESULT

97

98

There is no restriction on the nature of the alpha
numeric strings that may be substituted for dummy argu
ments. The following indicates some possibilities.

Call the SUM3 macro-instruction using more complex
call arguments.

(1) The following call

Opere Var. Field

SUM3 WORD+l,(DIGIT+1,3),NUMBER,RESULT

expands into the following:

CLA W¢RD+l
ADD DIGIT+1,3
ADD 'NUMBER
ST.0 RESULT

(2) The following call

SUM3 W0RD+NAME-23"NUMBER+3,/¢/44000

expands into the following:

CLA W~RD+NAME-23
ADD
ADD NUMBER+3
ST¢ /.0/44000

(R)-------------------(350.1 - 350.3)---------------------

Location Contents Location Opere Var. Field

00100 +0774 00 1 00012 AXT 10,1
00101 +0500 00 0 00223 L¢¢P CLA X
00102 +0601 00 0 00224 ST¢ y
00103 SUM3 NAME,W,X,Z
00107 +0120 00 0 00117 TPL NEXT
00110 +1 00001 2 00111 TXI *+1,2,1

(S)---------------------(At 350.4)------------------------

The FAP pseudo-operation used to CBuse printing of
macro-instruction expansions is PMC (grint macro
instruction). Repeated use of PMC "turns on"-and then
"turns off" this printing.

99

(R)------------------(351.4 - 351.10)---------------------

PSEUDO-OPERATIONS
Example 17.2 Compute the value of p:

p = (a+b+c) (d+e+f+g+h)/(a+d+h)

We can use the SUM3 macro-instruction:

Oper.

SUM3
SUM3
SUM3
SUM3
LDQ
MPY
DVP
STQ

Var. Field

A,B,C,TEMP
D,E,F,TEMP+l
TEMP+l,G,H,TEMP+l
A,D,H,TEMP+2
TEMP
TEMP+l
TEMP+2
P

In this program, to sum five numbers, the SUM3 macro
instruction must be used twice in succession. A temporary
location TEMP+l is required for the storage of the first
sum. The second and third calls should be examined; they
expand to the following:

CLA D
ADD E
ADD F
ST~ TEMP+l
CLA TEMP+l
ADD G
ADD H
ST,0 TEMP+l

(R)-------------------(352.4 - 352.9)---------------------

CONDITIONAL ASSEMBLY
The following pseudo-operation in the FAP assembler

is used to effect conditional assembly:

Oper. Var. Field

IFF P,A,B

100

The P subfield represents a symbolic expression, while the
A and B subfields represent alphanumeric strings. The
instruction that is next after the IFF pseudo-operation is
assembled if and only if the quantities p and q have the
same values, where

= {:

if the equi va lence of P is zero
p

if the equi va lence of P is nonzero

q = {:
if A and B are nonidentical strings

if A and B are identical strings

If at least one symbol in P is undefined prior to the
occurrence of the IFF pseudo-operation, then p = 0.

As examples, the following instructions will cause
the suppression of the next instructions:

IFF 1, R, S
IFF O,XXX,XXX
IFF L¢C+20,AA+l,1+AA

provided the equivalence of L0C is not -20. Note that
AA+l and l+AA are not identical strings (although they
have the same equivalence). The following instructions
will cause the assembly of the next instructions:

IFF 1,SS,SS
IFF O,X,Y
IFF NAME-NAME,A+B+C,A+C+B

Arguments to be substituted in the three subfields
of IFF may be substituted within a macro-definition as
may any argument.

(R)-------------------(353.0 - 354.7)---------------------

This pseudo-operation may be used to suppress the
instructions discussed in Example 17.2 For example, if
we write

IFF O,AC,A

then assembly if the next instruction will occur if and
only if A is not AC.

Example 17.3 Revise the SUM3 macro-instruction to
suppress AC instructions as indicated. Recode the evalua
tion of p, given in Example 17.2.

The macro-definition is

Locn. Opere Yare Field

SUM3 MACR¢ A,B,C,S
IFF O,AC,A
CLA A
ADD B
ADD C
IFF O,AC,S
ST9) S
END

Consider the following call and'how it will be
treated by the assembler.

SUM3 D,E,F,AC

101

Consider the first IFF. 8ince the IFF A and B subfields
are different (A = D and B = AC upon substitution), q = 0,
while p = 0 also. Therefore, assembly of the next instruc
tion occurs. Next consider the second IFF. Here, the
IFF A and B subfields are the same (they are both !lAC"
upon substitution) so that q = 1 while p = O. Hence, the
next instruction is not assembled. Therefore this call
expands as follows:

CLA D
ADD E
ADD F

By similar reasoning, the call

8UM3' AC,G,H,TEMP+l

expands into

ADD G
ADD H
8T,0 TEMP+l

The revised coding begins as follows (see Example 17.2):

8UM3 A,B,C,TEMP
8UM3 D,E,F,AC
8UM3 AC,G,H,TEMP+l
SUM3 A,D,H,TEMP+2

102

The second and third calls expand into the following:

CLA D
ADD E
ADD F
ADD G
ADD H
ST¢ TEMP+l

The redundant coding of Example 17.2 is not assembled.
In this use of the IFF pseudo-operation, the symbol

"AC" is used because it is suggestive of the accumulator.
Of course, any desired symbol may be used.

(M)-------------------(355. 4 - 355.9)---------------------

This material has no exact counterpart in FAP, since
the IFF pseudo-operation is more structured differently
from each of the IF-type HAP pseudo-operations. However,
there are parallels; the following usages are equivalent
in the two languages:

HAP FAP

IF SAME A,B IFF 1,A,B
IFDIFF A,B IFF O,A,B
IFZER¢ Q IFF Q,l
IFNf2jNZ Q IFF Q

(The reader should now read the material of
355.4 - 355.9 and then read the following.)

The first two cases of IFF above, illustrated in
earlier examples, permit the variability of the second and
third subfields. The last two cases illustrate its use
with a variable first subfield, which can then be tested
for zeroness. Thus, with subfield A = 1 and subfield B
blank, q = 0 and assembly of the next instruction occurs
if and only if Q is zero. Conversely, in the last case,
assembly occurs if and only if Q is nonzero. The book's
examples of the following form apply in FAP:

IFF Q/5
IFF Q-Q/2*2,1

(R)-------------------(356.0 - 356.4)---------------------

REPETITION IN CODING

Example 17.4 Write a macro-instruction to determine
the sum of the cubes of three quantities and to store the
result.

103

The macro-definition is

Locn. Opere Var. Field

SUMCUB MACR¢ A,B,C,S
STZ TEMP
LDQ A
MPY A
MPY A
XCA
ADD TEMP
ST.0 TEMP
LDQ B
MPY B
MPY B
XCA
ADD TEMP
ST.0 TEMP
LDQ C
MPY C
MPY C
XCA
ADD TEMP
ST.0 S
END

(R)-------------------(356.6 - 357.8)---------------------

Coding delimited by the IRP (lndefinite £e~eat) pseud~
operation at the start and end is repeated once for each
call argument supplied for a dummy argument A, the coding
being assembled with the call arguments given for A.

At the start:

Opere

IR'P

At the end:

IRP

Var. Field

A

The several call arguments for A are placed within paren
theses, separated by commas.

Example 17.4, continued Recode the SUMCUB macro
instruction, using IRP.

104

The new macro-definition:

Locn. Opere Var. Field

SUMCUB MACR,0 X,S
STZ TEMP
IRP X
LDQ X
MPY X
MPY X
XCA
ADD TEMP
ST¢ TEMP
IRP
ST,0 S
END

The call

SUMCUB (Xl,X2,X3),RESULT

expands into

STZ TEMP
LDQ Xl
MPY Xl
MPY Xl
XCA
ADD TEMP
ST,0 TEMP
LDQ X2
MPY X2

The sequence is the same as given earlier, except for an
extra ST,0 instruction near the end of the sequence.

The second macro-definition is shorter than the first
and serves for any number of repetitions. Thus the same
definition can be called upon by the following instruc
tions:

SUMCUB (W,0RDl, W,0RD2) ,ANSWER
SUMCUB (Yl,Zl,Xl,Al,B2,C3),SUM

In the first two cases two parameters are involved; in the
second, six parameters are involved. Through the use of
the IRP pseudo-operation a macro-instruction of variable
length may be defined. The length of the expanded coding
depends on the manner in which the macro-instruction is
ca lIed.

105

(R)-------------------(357.9 - 358.3)---------------------

CREATED SYMBOLS
Example 17.5 Write a macro-instruction that adds the

larger of two numbers to a third, leaving the sum in the
accumulator. If the numbers are equal, a jump to EQUAL
should occur.

The macro-definition is

Locn. Opere Var. Field

LARSUM MACR~ A,B,C
CLA A
CAS B
TRA DD
TRA EQUAL
CLA B

DD ADD C
END

(R)------------------(358.4 - 358.10)---------------------

Any dummy arguments that appear in a macro-definition
that are not called for within a macro-call, provided they
are omitted at the end of the oall, are replaced by the
assembler by created symbols. The following symbols are
created: •. 001, .. 002, .. 003, etc.; they are created in
this sequence as needed.

Example 17.5, continued Rewrite the macro-instruction
LARSUM, permitting a created symbol.

The macro-definition, which has one extra dummy
argument, is

Locn. Opere Var. Field

LARSUM MACR.0 A,B,C,DD
CLA A
CAS B
TRA DD
TRA EQ,UAL
CLA B

DD ADD C
END

106

The call

LARSUM NUMBRl,NUMBR2,DIGIT

which means "add the lare;er of the C(NUMBRl) and the
C(NUMBR2) to the C(DIGIT), and leave the sum in the AC,"
expands into

.. 001

CLA
CAS
TRA
TRA
CAL
ADD

NUMBRI
NUMBR2
.. 001
EQUAL
NUMBR2
DIGIT

(M)-------------------(359.0 - 359.3)---------------------

This material applies here, with just one change.
Dummy arguments to be replaced by created symbols do not
appear on CREATE cards, as described in the book.

(R)-------------------(359.3 - 359.7)---------------------

Example 17.6 Write a macro-instruction that places
the larger of two numbers in the accumulator. If the
numbers are equal, a jump to EQUAL should occur.

The macro-definition is

Locn. Opere Var. Field

LARGER MACR.0 A,B,DD
CLA A
CAS B
TRA DD
TRA EQUAL
CLA B

DD BSS 0
END

The call

LARGER W.0RD5,W.0RD7

expands into

CLA W¢RD5
CAS W¢RD7
TRA .. 001
TRA EQUAL
CLA W.0RD7

.. 001 BSS 0

107

(S)---------------------(At 359.10)------------------------

A special pseudo-operation is available to determine
whether or not a given symbol within a macro-definition
has been replaced by a created symbol.

Opere Var. Field

IFF P,/CRS/X

P has the same significance as previously, in the IFF
pseudo-operation. The quantity q has the value 0 if X is
not a created symbol and the value 1 if it is. Thus,

IFF l,/CRS/Q

causes assembly of the next instruction if and only if Q
is created.

(R)-------------------(360.3 - 361.3)---------------------

REMOTE ASSEMBLY
Coding delimited by the card

RMT

(for remote) at the start and at the end is assembled as
normally but is not assigned to memory locations until the
end of the program.

Example 17.7 Write a macro-instruction to evaluate
and store the function

f(x) = 5a + bc

At constant, 5, and one word of temporary storage are
required. In the following macro-instruction, these two
words are remotely assembled.

108

Locn. Opere

FUNCTN MACRflj
LDQ
MPY
STQ
LDQ
MPY
XCA
ADD
STflj
RMT

FIVE DEC
TEMP

RMT
END

The call

FUNCTN

expands into

LDQ
MPY
STflj
IDQ
MPY
XCA
ADD
STflj

while the two words

•. 001 DEC
.. 002

Var. Field

A,B,C,R,FIVE,TEMP
A
FIVE
TEMP
B
C

TEMP
R

5

XX,YYY,ZZZZ,ANS

XX
· .001
· .002
YYY
ZZZZ

• .002
ANS

5

are assembled at the end of the program. Created symbols
are used to refer to these two words to avoid multiple
definitions as before.

(This method actually wastes space, however, since
two words are assembled per FUNCTN macro-call, whereas
only two are needed in all. However, it points out that
macro-instructions can be completely self-contained, which
is useful.)

•

109

(R)-------------------(361.4 - 362.4)---------------------

NESTED MACRO-INSTRUCTIONS
Example 17.8 Write a macro-instruction that computes

one of these two functions:

f = a + b,

g = a - b,

if a and b are both positive;
otherwise.

Two macro-instructions for addition and subtraction
are defined first:

Locn. Oper.

ADDMAC MACR,0
CLA
ADD
ST,0
END

SUBMAC MACR,0
CLA
SUB
ST,0
END

Var. Field

A,B,C
A
B
C

A,B,C
A
B
C

The main macro-definition is

C,0MPUT MACR,0
CLA
TMI
CLA
TMI
ADDMAC
TRA

SUB SUBMAC
¢UT BSS

END

The call

K,L,S,SUB,,0UT
K
SUB
L
SUB
1\, L, S
,0UT
K, L,S
o

C,0MPUT THIS,THAT,RESULT

expands into the following coding, where L(a) = THIS,
L(b) = THAT, and L(f) or L(g) is RESULT.

110

.. 001

.. 002

CLA
TMI
CLA
TMI
CLA
ADD
ST~
TRA
CLA
SUB
ST.0
BSS

THIS
• .001
THAT
• .001
THIS }
THAT
RESULT
• .002
THIS)
THAT
RESULT
o

Expansion of ADDMAC

Expansion of SUBMAC

(M)-------------------(363.7 - 364.5)---------------------

(This material has no counterpart in FAP, since there
is no pseudo-operation in the latter equivalent to T.0.
However, the pseudo-operation G.0 (with a blank variable
field) may be used. It works like the book's T.0 with a
variable address that refers to the end of the macro
instruction. In other words, G.0 causes assembl~ of the
rest of the macro-instruction to be suppressed.)

(R)-------------------(365.3 - 366.4)---------------------

Example 17.10 Write a macro-instructions to perform
two of the five block operations.

l.-Clearing By this is meant placing zeros in every
word in the block. The call is to have the form

Locn. Opere Var. Field

CLRBIK BL.0CK,N

This means "Clear the block starting at BL.0CK of size
C(N)"; the number of words in the block is located in N.

The macro-definition is

C LRBIK MACR.0
AXT
STZ
TIX
END

A,B
B,4
A+B,4
*-1,4·,1

XR4 is used in all the block macro-instructions and is
therefore to be used outside with caution.

III

2. Moving The call is to have the form

MOVBLK BL¢CKl,Nl,BL¢CK2,N2

This means "Move the block at BL¢CKI of size C(Nl) so that
it immediately follows the block at BL¢CK2 of size C(N2).

The macro-definition is

M¢VBLK MACR¢
CLA
ADD
STA
CLA
ADD
ADD
STA
AXT

Yl CLA
Y2 ST¢

Zl
Z2

TIX
RMT

RMT
END

Bl,Nl,B2,N2,Zl,Z2,Yl,Y2
Zl
Nl
Yl
Z2
Nl
N2
Y2
Nl,4
**,4 (Bl+Nl)
**,4 (B2+Nl+N2)
*-2,4,1

Bl
B2

The first 7 instructions are used to set the addresses of
locations Yl and Y2. The first such address (of Yl) must
be set to "BL.0CKl+nl" and the second (of Y2) must be set to
"BL¢CK2+nl+n2" if the first word in BLOCKI is to go after
the last word in BL.0CK2.

(Refer to the book for the continuation of the example.)

(R)-------------------(366.8 - 367.9)----------------------

Example 17.11 Write a program that (1) reads three
blocks of data (with no more than 2500 numbers in each)
from tape F, placin~ them in blocks starting at LIST,
TABLE, and DIGITS, (2) combines these into one larger block
at DIGITS, (3) places in a new block at NUMBRS all positive
numbers from this block that are less than 1000, and (4)
then prints out the list of such numbers on tape G. The
number of words in each of the three records on tape appears
in a three-word record at the start of the tape.

After the three blocks are read in, they are combined
at DIGITS. In order to add the third block (TABLE) the
size of the combined blocks at DIGITS and LIST must be com
puted. The total size of the combined blocks is needed for
the loop within which all positive numbers less than 1000
are stored in NUMBRS. As each number is stored in that

112

block, the C(XR2) is decreased by 1; XR2 is used as a
pointer to the next available location in the block at
NUMBRS. Finally, the number of words in NUMBRS is placed
in sz4 and used in the PRTBLK macro-instruction. In the
program, note that the three-word record will be read into
SZl through SZ1+2, i.e., into SZl, SZ2, and SZ3.

Locn. Oper. Var. Field

READBK SZl,THREE,F Read 3-word record
READBK LIST,SZl,F
READBK TABLE, SZ2, F
READBK DIGITS,SZ3,F
M,0VBLK LIST,SZl,DIGITS,SZ3
CLA SZl Form size of 2 blocks
ADD SZ3
ST.0 SUMSZ
ADD SZ2 Form size of 3 blocks
ST.0 T¢'rLSZ
M.0VBLK TABLE,SZ2,DIGITS,SUMSZ
AXT 7500,2
CLA XDIGIT Set address
ADD T¢TLSZ
STA M.0RE
LXA T¢TLSZ, 1

M.0RE CLA **,1 (DIGITS+totlsz)
TMI N.0LIST Place pOSe numbers
CAS TH.0US smaller than 1000
TRA N.0LIST in NUMBRS
TRA N0LIST
ST.0 NUMBRS.+-7500,2
TXI *+1,2,-1

N,0LIST TIX M.0RE,l,l
SXA TEMP, 2 De te rmine coun t
CIA X7500 of numbers stored
SUB TEMP
ST.0 sz4
PRTBLK NUMBRS,SZ4,G
HTR

(Cont'd.)

113

Loen. Opere Var. Field

SZl
SZ2
SZ3
SZ
SUMSZ
T¢TLSZ
TH,0US DEC 1000
THREE DEC 3
XDIGIT
TEMP
LIST BSS 2500
TABLE BSS 2500
DIGITS BSS 7500
NUMBRS BSS 7500

(R)-------------------(368.4 - 370.7)---------------------

Example 17.12 Write macro-instructions to simulate
100 index registers, using the CLA instruction as a
specific illustration.

Normal assembler instruction names, e.g., CLA, ADD,
and SUB, are to be used by the programmer in the usual
manner, but with tags as high as 100. Since an instruc
tion such as

CLA LIST, 68

would be misinterpreted by the assembler under normal
circumstances, the symbol CLA must refer to a macro
instruction. This macro-instruction must produce the
proper coding for the simulation of XR68.

In order that the assembler operation codes be inter
preted as macro-instructions, new names must be assigned
to the machine instructions. This may be done by a series
of pseudo-operations as follows:

Locn.

CLA.
ADD.
SUB.

Opere

¢PSYN
,0PSYN
,0PSYN

Var. Field

CLA
ADD
SUB

Now the original names (in the variable field above) may
be used as macro-instruction names.

114

Since the 7094 has 7 index registers, 93 will be
simulated. XRS through XRIOO will be simulated by
93 words in memory in a block, starting at SIMXR. Thus,
XRJ, where J = S, 9, ... , 100, will be simulated by loca
tion SIMXR+J-S.

Consider the simulation of the CIA instruction. One
of three coding sequences must be assembled, conditional
on the tag: (1) an unta~ged CLA instruction is required
if no tag is present; (2) a normal, tagged CLA instruction
is required if a tag from 1 to 7 is given; and (3) a
coding sequence as follows is required if a tag from S
to 100 is given: the instructions assembled must, when
they are executed later, modify the CLA operand address by
the contents of the simulated XR. These conditions are
depicted in Fig. 17.1 in the book.

Conditional-assembly techniques are required. Two
decisions must be made. The test for a tag can be made
with the IFF test for a created symbol; if the tag is
omitted, a created symbol can be produced. The test for
the "size" of the tag can be made with another form of the
IFF pseudo-operation. Because IFF affects only t.hefollowing
instruction, an inner macro-call is required, since several
instructions must be assembled conditionally.

The instructions assembled in the event that a tag
from S through 100 is given provide for saving and
restoring XRl, which is used as the actual index register,
for executing the CLA instruction, and for loading XRl
with the C(SIMXR+J-S).

The macro-definitions are

Locn. Oper. Var. Field

CLA MACR.0 A,T
IFF l,/CRS/T
CLA. A
IFF O,/CRS/T
CLAM A,T
END

CLAM MACR.0 A,T
IFF T/S,l
CLA. A,T
IFF T/S
CLAN A,T
END

CLAN MACR.0 A,T
SXA. SAVXl, 1
LXA. SIMXR+T-S,l
CLA. A,l
LXA. SAVXl, 1
END

Assemble if no tag

Assemble if tag

Assemble if tag is
1 through 7

Assemble otherwise

Save XRl

115
The use of a normal machine operation code as a macro

instruction name reassigns that name to the latter function
and deletes its use as a machine operation for that
assembly. Thus CLA now refers only to the macro-instruc
tion.

Note that operation codes ending in "." are used when
a machine instruction is to be assembled. The following
three macro-calls lead to the accompanying expnasions:

Opere Var. Field

1. Call: CLA SWITCH

Expansion: CLA. SWITCH

2. Call: CLA LIST, 5

Expansion: CLA. LIST,5

3. Call: CLA NAME,32

Expansion: SXA. SAVX1,1
LXA. SIMXR+32-8,1
CLA. NAME, 1
LXA. SAVX1, 1

other instructions are similarly simulated, but a
different coding structure is needed for such instructions
as LXA, TXI, and TSX. To simulate LXA, e.g., we need only
place a number in the proper SIMXR word (if the tag is 8
or greater); it 1s not necessary to use a real index
register in the process. Similarly, to simulate TXI, we
need only increase the proper SIMXR word contents.

(R)-------------------(371.2 - 371.8)----------------------

Locn. Opere

HALT

ADD.
ADD

MACR.0
HTR
END

.0PSYN
MACR0
CLA
ADD.
ST0
END

Var. Field

ADD
A,B,C
A
B
C

116
Locn. Opere Var. Field

SUBT MACR,0 A,B,C
CLA A
SUB B
ST.0 C
END

MULT MACR¢ A,B,C
LDQ A
MPY B
STQ C
END •

DIV MACR,0 A,B,C
LDQ A
PXA 0,0
LLS ° DVP B
STQ C
END

M,0VE MACR,0 A,B,C
AXT B-A+l,4
CLA B+l,4
ST,0 C+B-A+l,4
TIX *-2 4 1 , ,
END

JUMP MACR,0 A
TRA A
END

JUMPPM MACR,0 A,B,C
CLA A
TPL B
TMI C
END

117

(R)-------------------(372.4 - 373.2)---------------------

"Example 17.13 The first technique might use a PRINTL
macro-instruction which provided a printout (probably with
a standard format) of an indefinite number of specified
words (a list), as in

PRINTL (NUMBR,W,0RD,W0RD+3,XYZ)

The structure of PRINTL depends on the form of the ca 11
for the monitor input-output subroutine. It can be
inserted at any desired points in the program.

The second technique can be exemplified by a procedure
that automatically supplies a printout of the contents of
the referenced location in any ST~ instruction. To accom
plish this, the operation ST~ must be defined as a macro
instruction. Another printing macro-instruction, PRINT,
is used.

Locn. OI2e r. Yare Field

ST,0. 0PSYN ST~
ST~ MACR~ A,T

IFF l,/CRS/T
ST,0. A
IFF O,/CRS/T
ST~. A,T
PRINT A,T
END

To allow for the presence or absence of a tag, the IFF
pseudo-operations are used. Here, we shall assume that a
tag may also be present on the PRINT call.

(R)---~---------------(373.6 - 374.8)---------------------

ExamI21e 17.14 Write the TURN0N and TURN0F macro
instructions described.

To accomplish this, ST~ must be used for both the
normal machine instruction (when no printing is desired)
and for the macro-instruction (when printing is desired).
The TURN~N and TURN0F macro-instructions have the function
of the switching the significance (and interpretation) of
the word ST,0 back and forth between these two, the machine
instruction and the macro-instruction. In this way the
printing fea ture is "turned on and off."

118

The TURN¢N and TURN¢F macro-instructions have no
arguments; their calls appear to be pseudo-operations.

Locn. Opere

ST,0. ,0PSYN
ST,0 .. MACR,0

IFF
ST,0.
IFF
ST,0.
PRINT
END

TURN,0N MACR,0
ST¢ ¢PSYN

END

Yare Field

ST¢
A,T
l,/CRS/T
A
O,/CRS/T
A,T
A,T

ST,0 ..

TURN¢F MACR,0
ST¢ ¢PSYN ST,0.

END

A short program, using these features, follows:

Locn.

QQQ

Opere

TURN¢N
AXT
CLA
ADD
ST,0
TIX
TURN¢F
CLA
ST,0
TZE

Yare Field

200,1
LIST+200,1
SIX
LIST+200, 1
QQQ,l,l

NUMBER
TABLE
¢UT

This sequence expands into the following coding
(macro-calls are not given):

QQQ
AXT
CLA
ADD
ST.0.
PRINT
TIX
CLA
ST,0.
TZE

200,1
LIST+200, 1
SIX
LIST+200, 1
LIST+200, 1
QQQ,l,l
NUMBER
TABLE
¢UT

119

(R)-------------------(375.3 - 376.2)---------------------

Example 17.15 Write coding so that printing occurs
(1) at every third ST,0 instruction, and (2) at every
third ST,0 execution.

1. The ST¢ macro-instruction of Example 17.13 is
modified to provide for conditional assembly of the output
macro-instruction (PRINT). The symbol Q is used as a
counter, increased by 1 each time the macro-instruction is
called. The IFF variable field is similar to one given
earlier, in Section 17.1, under "Conditional Assembly."
Assembly of PRINT occurs every time Q is a multiple of 3.

Locn.

Q
ST¢.

STflj

Q

Opere

SET
.0PSYN

MACR0
IFF
ST0.
IFF
STflj.
SET
IFF
PRINT
END

Var. Field

° STflj

A,T
l,/CRS/T
A
O,/CRS/T
A,T
Q+l
Q-Q/3*3,1
A,T

2. Now counting must be done when the program is
executed. To achieve this, a sequence of coding must be
included that calculates the function Q-Q/3*3 where the
contents of the counter is Q (when the program is
executed).

CLA CNTR Q+l to Q
ADD 0NE
ST0 CNTR
XCA
PXA 0,0
DVP THREE
MPY THREE Q/3*3
TNZ N.0PRINT Test for Q-Q/3*3 = °
PRINT A,T

N¢PRNT . . .
It is easier to compute the remainder directly, but this
approach is taken as a parallel to method 1.

120

(R)-------------------(376.5 - 378.4)----------------------

Example 17.16 Write a macro-instruction that will
cause a single word to be assembled, containing n! The
call is to be as follows:

FACTL N

where N represents an integer to be supplied.
Two nested macro-instructions are used. In the inner

macro-instruction (FACTLX) the actual recursion occurs.
The macro-instruction repeatedly calls itself, each time
computing one more factor in n!, as follows: 1·2·3··· ·n.
At the same time, a "counter" Q is used for loop control;
the counter runs from 1 to n. An IFF is used to control
the recursion; when the counter contains the value n, the
process stops.

The outer macro-instruction is used to initialize both
the counter Q (at 0) and a partial product F (at 1). If n
is given as 0, assembly of the FATCLX macro-call is sup:
pressed and F (which is n!) is set equal to 1. After
FACTLX computes n! (for n ~ 0), the word containing n! is
assembled. A flowchart of the process appears in Fig. 17.2
in the book.

Locn.

FACTL
Q
F

Z

FACTLX
Q
F

Opere

MACR¢
SET
SET
IFF
FACT LX
DEC
END

MACR0
SET
SET
IFF
FACTLX
END

Var.

N,Z
0
1
N
N
F

N
Q+l
F*Q
Q-N
N

Field

As an example of how this works J con.sider the call

FACTL 4

Following is a list of most of the pseudo-operations as
they are generated in the assembly process during the
recursive calling of FACTLX. The SET and IFF pseudo
operations are listed in the order of their generation:

Expansion of FACTL: Q
F

Expan sion of FACTLX (1st time): Q
F

Expansion of FACTLX (2nd time): Q
F

Expansion of FACTLX (3rd time): Q
F

Expansion of FACTLX (4th time): Q
F

SET 0
SET 1
IFF J-\.

SET 1
SET 1
IFF -3

SET 2
SET 2
IFF -2

SET 3
SET 6
IFF -1

SET 4
SET 24
IFF 0

Expansion of FACTL: •• 001 DEC 24

121

Chapter 18
INTERPRETERS AND SIMULATION

(R)-------------------(387.5 - 391.2)---------------------

AN INTERPRETIVE PROGRAM
The following instruction is useful in Example 18.2.
LOAD COMPLEMENT OF ADDRESS IN INDEX (LAC Y) (+0535);

2 cycles. The 2's complement of the C(Y)21-35 replaces
the contents of the specified index register. The C(Y)
is unchanged.

Example 18.2 Refer to the book for the introduction
to an analysis and flowchart of this program. That mater
ial applies here with one modification. The comtlement of
the C(lOOOO) is placed in XR2, rather than the C 10000),
as noted at 398.3. This is necessary because 7090 index
registers work by decrementing. Notice that 100008 must
be added to addresses in the program before they are used
to set addresses or SIMAR, as in the M¢VE, JUMPSR, and
JPPMSR routine s .

Locn. Opere

NEXT

LAC
CLA
ST¢

CAL*
ANA
ARS
STA
CAL*
ANA
ARS
STA
CAL*
ANA
STA

Var. Field

/¢/10000,2
/¢/10001.
SIMAR

SIMAR
AMASK
18
ADDRA
SIMAR
BMASK
9
ADDRB
SIMAR
CMASK
ADDRC

(Cont 'd.)

122

Place compl. of C(lOOOO)
in XR2

Place starting addr in
SIMAR

Obtain A-address by
masking out rest of
instruction; place in
ADDRA

Obtain B-address ...

Obtain C-address ...

Locn. Ope r.

SUBRT

CAL*
ANA
ARS
PAX
TRA*

RETURN CLA
ADD
ST~
TRA

HALTSR HTR
ADDSR CLA*

ADD*
ST~*
TRA

SUBTSR CLA*
SUB*
ST.0*
TRA

MULTSR IDQ*
MPY*
STQ*
TRA

DIVSR IDQ*
PXA
LLS
DVP*
TRA

M,0VESR CLA
SUB
ADD
PAX
ADD
ADD
STA
SUB
ADD
STA

Var. Field

SIMAR
,0PMASK
27
0,1
SUBRT+7,1
JPPMSR
JUMPSR
M,0VESR
DIVSR
MULTSR
SUBTSR
ADDSR
HALTSR
SIMAR
.0NE
SIMAR
NEXT

ADDRA
ADDRB
ADDRC
RETURN
ADDRA
ADDRB
ADDRC
RETURN
ADDRA
ADDRB
ADDRC
RETURN
ADDRA
0,0
o
ADDRB
RETURN
ADDRB
ADDRA
.0NE
0,4
ADDRA
REL,0CN
MVl
ADDRA
ADDRC
MV2

(Cont 'd.)

Obtain operation code

Place OPe code in XR1
Transfer on OPe code
7
6
5
4
3
2
1
o

123

Return point after non
tra. execution; modify
SIMAR by 1

Form size of block:
B-A+l

Place size in XR4

Add 10000 for relocation

124

Locn. Opere

MVI CIA
MV2 ST¢

TIX
TRA

JUMPSR CLA
ADD
STA
TRA

JPPMSR CLA*
TPL
CLA
ADD
STA
TRA

TRI CIA
ADD
STA
TRA

SIMAR
AMASK ¢CT
BMASK ¢CT
CMASK ¢CT
¢PMASK ¢CT
ADDRA
ADDRB
ADDRC
¢NE DEC
REL¢CN ¢CT

Var. Field

** 4 ,
** 4 ,
*-2,4,1
RETURN
ADDRA
REL,0CN
SIMAR
NEXT
ADDRA
TRI
ADDRC
REL,0CN
SIMAR
NEXT
ADDRB
REL¢CN
SIMAR
NEXT

000777000000
000000777000
000000000777
007000000000
**,2
**,2
**,2
1
10000

(B+l, which is A+size)
(B-A+C+l, which is

C+size)

Fetch new address for
SIMAR

Test sign of C(ADDRA)

Set SIMAR to C-address

Set SIMAR to B-address

Simulated AR
Masks

Registers for the 3
addresses

(M)-------------------(391.7 - 394 .8)---------------------

(The material in 391.7 - 394.8, though it applies to
a program written for the DELTA 63, applies to a study of
interpreters on the 7090 as well. The concepts are
general, and a study of the material ~an be understood
almost entirely even if details on coding are not.)

(R)-------------------(395.3 - 395.10)--------------------

Example 18.4 Write routines for a self-interpreter
for the 7090 to simulate the instructions TXI, TSX, and
TIX.

In the self-interpreter, the address, tag, and
decrement portions of the instruction being executed
interpretively are placed in ADDR, TAG, and DECR, respec
tively (in the address fields). Then control goes to the

125

individual rautines. In additian, the SETTAG rautine is
executed at that time. Its purpase is ta set inta a
memary lacatian the tag 'Of the instructian being executed;
the address field 'Of that ward cantains the address
SIMXR~l. SIMXR heads a black 'Of seven'wards; SIMXR+j-l
repre~ents the simulated XRj (allawing far seven index
registers). An indirect address reference ta that ward
thus references the praper simulatedXR. The 15 rightmast
bits 'Of the simulated XR represent the cantents 'Of that
XR.

The rautine far setting the index-register address:

Locn. Opere Var. Field

SETTAG CLA BSIMXR
ADD TAG
ST.0 REFXR ' ..

REFXR ** (SIMXR+j-l)
BSIMXR SIMXR-l

In the fallawing rautines, SIMAR, RETURN, and NEXT
represent the same instructians as in Example 18.2;
cantral passes ta RETURN if a transfer is nat executed;
cantral passes ta NEXT if a transfer is executed. The
STA instructian is used ta stare a new value;in the
simulated XRs; by sa daing, any arithmetic perfarmed an
the XR is effectively dane madulo 1000008 as required.

Opere

TXI: CLA*
ADD
STA*
CLA
ST,0
TRA

TSX: CLA
CAS
TRA
TRA
TRA
SUB
STA*
CLA
ST,0
TRA

Var. Field

REFXR
DECR
REFXR
ADDR
SIMAR
NEXT

SIMAR
DECR
*+3
RETURN
RETURN
DECR
REFXR
ADDR
SIMAR
NEXT

Madify XR

"Transfe r"

Farm 2's camplement
wi th decrement

C(XR) gr. than decr.
C(XR) equal ta decr.;

"ga an"
Madify C(XR) by decrement

"Transfe r"

The last three instructians in these three routines are
identical and cauld be cambined.

Chapter 19
PROGRAM DEBUGGING AND TESTING

(S)---------------------(At 402.3)------------------------

ASSEMBLER AIDS
In addition to the errors listed in the book, the FAP

assembler also flags these errors:
6. Illegal indirect addressing.
7. Improper tag and decrement.
8. Errors in other pseudo-operations.
9. Relocation errors.

(R)-------------------(402.4 - 403.8)---------------------

Example 19.1 The following letters are used by the
FAP assembler to flag errors:

U - undefined symbol
M multiply-defined symbol o illegal operation code
G error in data-generating card, such as ¢CT or DEC
A improper address or omitted address where required
T improper tag or omitted tag where required
D improper decrement or omitted decrement where

required
I illegal indirect addressing
P illegal use of pseudo-operation
R - relocation error.

Other flags are given, under appropriate conditions.
The program below, taken from Example 8.7, is recoded

with several errors that are flaggable by the assembler.
The octal listing is given with error flags. Note that
portions of octal words are omitted where errors are
present.

126

Location Contents

00200
00201 +0560 00 1 04147

T 00202 +0774 00 0 03720
00203 +0754 00 0 00000

u 00204 +0221 00 0
¢ 00205 00000 0 00000

00206 +0734 00 2 00000
00207 +0500 00 2 00227

M 00210 +0400 00 0 00214
00211 +0501 00 2 00227

un 00212 +2 00000 00201
00213 +0000 00 0 00000

M 00214 +000000000001
00215
00227

M 04147 +0 00000 0 00001

Location

NEW¢NE

¢NE
CTABLE
LIST
¢NE

Opere

¢RG
LDQ
AXT
PXA
DVP
XAC
PAX
CLA
ADD
ST¢
TIX
HTR

DEC
BSS
BSS
PZE

127

Var. Field

/¢/200
LIST+2000,1
2000
0,0
TEN

0,2
CTABLE+lO,2
¢NE
CTABLE+lO,2
NEW¢NE,I

1
10
2000
1

The errors made were as follows: (1) omission of the
tag in the AXT instructionj (2) failure to define the
symbol "TEN"j (3) mispunching of XCA as "XAC"; (4) multiply
defining the symbol "¢NE"; (5) mispunching of the ta~ "1"
as "I" in TIXj this appears as an undefined symbol (I");
(6) omission of the decrement in the TIX instruction. Note
that two flags appear on one line; two errors were made
in one symbolic instruction.

In the event that part or all of a word cannot be
assembled because of an error, the FAP assembler sometimes
leaves blanks or, in the case of a multiply-defined symbol,
assembles the earlier address. The resulting object deck
will have zeros punched where blanks appear in the listing.
Thus, at location 00204, the following word is assembled
in the deck:

022100000000

If certain fatal errors occur in a program, an object deck
is normally not produced and the program is not run at that
time; such errors include those with flags U, M, and ¢.
Other errors, called nonfatal, do not inhibit deck punching
or immediate execution; these include those with flags A,
T, and D. These latter "errors" may be intentional and the
assembler permits a run. Optionally, a deck may be punched
regardless, if appropriate indications is given. FAP pro
vides, with the listing, a list of undefined and multiply
defined symbols.

The errors made .in this example,. like all coding errors
can be corrected by the use of correction cards, described
in Section 11.1, or by reassembly.

128

The following octal correction cards will correct the
errors made in the program. They would be applied to the
object deck.

Locn. Opere Var. Field

00202
00204
00205
00212
20000

,0CT
,0CT
,0CT
,0CT
,0CT

077400103720
022100020000
013100000000
200001100201
000000000012

Most of these cards are easily understandable. Note that
a word containing 10 (128) has been established at loca
tion 20000, a location outside the program.

(R)-------------------(403.9 - 404.2)---------------------

Example 19.2 The symbol reference table for the pro
gram coded in Example 8.7 is as follows:

Locn. Symbol References

00214 ,0NE 00210,00214
04147 TEN 00204,04147
00227 LIST 00201,00227
00215 CTABLE 00207,00211,00215
00201 NEW¢NE 00201,00212

(R)-------------------(406.4 - 406.7)---------------------

HELP AT THE CONSOLE
Example 19.3 Refer to the book for a description and

analysis of this problem. There are, of course, only
three index registers, in the 7090; this will not effect
the description given. The instructions under considera
tion are the following:

TRA 02123,2
TRA 02234,4

(R)------------------(409.4 - 409.10)---------------------

THE USE OF DUMPS
In the 7090 a special trapping feature is provided.

If bits S, 1, and 2 of an instruction being executed con
tain the bits 1, 0, and 1, respectively, the instruction
is interpreted as STH:

129

STORE LOCATION AND TRAP (STR); 2 cycles. The loca
tion of this instruction, plus one, replaces positions 21-
35 of location 00000. The computer then takes its next
instruction from location 00002. The contents of posi
tions 3-35 of this instruction are not interpreted.

Through the use of STR, the monitor system is able to
gain control. As the program deck is loaded, the SNAP
cards are also loaded. As these are encountered by the
monitor, the information on them is stored within the
snapshot ro~tine. A snapshot table is established with a
list of addresses where snapshots are requested and with
other appropriate information. The monitor places the STR
prefix in bits S, 1, and 2, after saving the instructions'
original prefixes.

During the running of the program, when control passes
to an instruction containing an STR prefix, a trap occurs
and control passes to 00002. At that location, a transfer
instruction sends control to the snapshot routine. There
a search is made of the snapshot table, and if a dump was
requested at the address in location 00000 (from where
control just came), the dump is given.* Then the instruc
tion with the STR prefix must be executed. This is done
remotely, within the monitor, where the proper prefix is
combined with the other 33 bits of the instruction so that
execution can occur. Finally, control returns to the pro
gram being run so that it may continue at the point from
which control left it.

To assist the programmer when his program unintention
ally sends control outside the block of executable instruc
tions, the monitor, just prior to loading a program, places
STR ~refixes throughout memory (except for the monitor
area). Programs loaded into memory of qourse write over
some of these STR's, but the areas not so covered retain
them; areas set aside by BSS pseudo-operations retain their
STR's. If, then, control passes to a location outside the
program (or possibly to within a block of data), a trap
occurs and the monitor, 'recognizing the fact that no snap
shot was requested at that location, stops the program,
indicating where control went erroneously.

(R)-------------------(413.1 - 413.9)----------------------

THE USE OF MACRO-INSTRUCTIONS
Example 19.4 Write a short program containing a loop

in which a debugging macro-call is placed

*Actually, 00000 contains one more than that address.

130

The program:

Locn.

START

Opere

AXT
CLA
ADD
ST¢
PRTBLK
TIX
HTR

Var. Field

100,1
SUM
NUMBRS+IOO,l
SUM
¢, SUM, SUM, UNTIL, 5
START,l,l

The resultant printout, which merely shows the contents of
SUM, might appear as follows:

000000000010
000000000034
000000000055
000000000067
000000000102

The next example shows a more complex printout, the
dump of two different blocks.

Example 19.5 Consider Example 8.6, which sorts a
list of 1000 numbers into two blocks, P¢SLST and NEGLST.
Assume that the following two cards are inserted in the
program immediately preceding the instruction at M¢D:

PRTBLK D,P¢SLST,POSLST+3,UNTIL,4
PRTBLK D,NEGLST,NEGLST+2,UNTIL,3

The request here is for a decimal output, assumed to be
given with three or four words to a line. The resultant
output might be as follows:

+23498 0 0 o
0 0 0

+23498 0 0 o
-232 0 0

+23498 0 0 o
-232 -86001 0

+23498 +77 0 o

Note that four dumps of P¢SLST (four numbers on a line)
were given, while three dumps of NEGLST (three numbers on
a line) were given.

131

(R)-------------------(414.3 - 415.3)----------------------

Example 19.6 Write a macro-instruction that will
provide the following information, all in octal, when
control passes to it:

1. The C(AC) and the C(MQ):
2. the contents of the three index registers;
3. the contents of any three specified words in

memory;
4. the contents of a block of any size in memory.

- A typical call is:

DUMP W¢RD,XXX,SUM,LIST,LIST+IO

which means "Dump the AC, the MQ, the three XRs, locations
W¢RD, XX, and SUM, and the block from LIST through LIST+IO."

In the macro-instruction that follows, the index
registers, the AC, and the MQ are first saved and subse
quently restored. The PRINTL macro-instruction of
Example 17.13 is used to print a list. A new macro
instruction, PRINTB, is used to print a block.

Locn. Opere Var. Field

DUMP MACR,0 A,B,C,L,M
SXA Q,l Save XRs
SXA Q+l,2
SXA Q+2,4
SLW Q+3 } These 3 instructions save

Q
N3777

ARS
ST¢
STQ
PRINTL
PRINTL
PRINTB
CLA
ALS
,0RA
IDQ
LXA
LXA
LXA
END

BSS
¢CT

36 all 38 bits of the AC
Q+4
Q+5 Save MQ
~Q,Ql,Q2) Print XRs
A,B,C) Print 3 words

L,M Print block
Q+4 } These 3 instructions
36 restore the complete AC
Q+3
Q+5
Q,l
Q,1,2
Q+2,4

6
377777777777

Accumulator 2, 68
Addition 2-5, 73
Address modification 19-20
Alphanume ric informa-

tion 61-62
coding 79-80
converting 90

Arithmetic accumulator 68
Arithmetic instruc-

tions
Assembler aids
Assembler language
Assembly listing

BCD informa tion
BCD pseudo-operation
BCI pseudo-operation
BES pseudo-operation
Block operations

3, 6
126

14
16

61-62
63
62
44

43-45,110-113
Branching

Card punch
Card reader
Cards, loading

format
Closed subroutines
Coding alphanumeric

46-50

23-24
23
25
15

53-60

information 79-80
Conditional assemblY99-102
Console help 128
Conversion 90-94

integers 86-87
Convert instructions90, 93
Correction cards

61, 127-128
Created symbols 105

INDEX

133

Data, loading 25
Data channel 1
Data instruction 20
Data-moving instructions

3, 6
Data processing 90-96
Debugging 126-131
DEC pseudo-operation 72
Decisions 11-13
Decrement 30
Division 5-9, 73
Dumps 128-129
Dynarn:tc storage

allocation 65-66

Error flags 126-127

Factorial, computation
by macro-instruc-
tions 120-121

FAP language 14-16, 52
Fixed branching 46-47
Fixed-point numbers 2
Floating-point numbers 2
Floating-point operations

72-73

G¢ pseudo-operation 110

Histogram 41-42

IFF pseudo-operation
99-100, 107

Indexing instructions
29-31, 35, 40-41

Index registers 28-44
simulation of 100

113-115

134
Indirect addressing

43-44, 57-58
Input-output operations

61-63
Instruction format

15, 28-29
Instruction word 2
Integers 2

conversion 86-87
ordering 88-89

Interchange sort 94-95
Interpreters 122-125
IRP pseudo-operation 103

Largest number, deter-
mination 45-46

Linkage, subroutine 53
Listing, assembly 16
Lists 85-86
Logical accumulator 68
Logical instructions

20-21, 66-68, 75-76, 80
Loops 18-27

Macro-instructions
52, 97-121, 129-130

Magnetic tapes 1
information 22
reading and writing

Masking
Memory
Memory space,

22-24
68

1
minimizing

64
Merging 95-96
Monitor program 61, 63
Multiplication 5-9, 73
Mu1t'ip1ier-quotient (MQ)

register 2

Nested macro-instruc-
tions 109-110

Nim 82-85
Nonnumerica1 problems

75-89
Numerical problems 72-73

Octal correction cards
61, 127-128

Open subroutines 51-52
0pSYN pseudo-operation

113

Ordering integers
88-89, 94-95

Packing 69-71, 79
Pattern detection . 87-88
PMC pseudo-operation 98
Pointers 39
Polynomial evaluation

8-10, 14, 21-22, 35
Printer, line 24
Printing macro-instruc-

tions 117-119, 121
Program loops 18-27
Program planning 64-71
Program testing 126-131
Pseudo-operations 15, 44,
62-63, 72, 93-94, 98, 113

macro-instruction 97,
99-100, 103, 107 110

Push-down lists 42-43

Qualifiers 16

Reading out results 26-27
Reading tapes 22-24
Recursive macro-instruc-

tions 120-121
Remote assembly 107-108
Repetition in coding

102-104
RMT pseudo-operation 107
Running time of instruc-

tions 64

Sense indicator register
81-82

Sequencing in memory 45-50
Shifting 66-68
Simulation, index

registers 113-115
3-address computer

. 115-116
Skip instructions 46
Sorting, by signs 38-39

see also 1I0r dering 1l

Storage allocation 65-66
Structure of computers 1
Subroutines 51-60

linkage 53
Subtraction 2-4, 73

SummatiQn of numbers
19-20, 33-34

subroutines
51-52, 55-57

Symbolic coding 14-17
Symbolic expressions,

analysis 76-78
Symbol reference table 128

Table-look-at
Tag
Tapes

40-42
28

see "Magnetic tapes"
Testing of programs

126-131
46 Test instructions

Three-address computers,
simulation

135
with macro-instruc-

tions 115-116
with interpreter

122-124
Time-space balance 40
Transfer instructions 10
Transfer of control 53-54
Transfe r of informa tion

54-55
Trapping feature 129

Unpacking

Variable branching
VFD pseudo-operation

Words in memory
Writing tapes

69-71

47-49
93-94

1-2
22-24

ADD
AIS
ANA
ANS
ARS
AXT
CAL
CAQ
CAS
CLA
CLM
COM
CRQ
ERA
FAD
FDH
FMP
FSB
HTR
IIA
LAC
LAS
LDI
LDQ
LGL
LGR
LXA
NZT
ONT
ORA
ORS
PAC
PAl
PAX
PBT
PXA
RQL
SLW
STA

INDEX TO INSTRUCTIONS

Add
Accumulator left shift
"And" to accumulator
"And" to storage
Accumulator right shift
Address to index true
Clear and add logical
Convert by addition to the AC
Compare AC to storage
Clear and ADD
Clear magnitude
Complement magnitude
Convert by re~lacement from MQ
"Exclusi ve or' to the AC
Floating add
Floating divide or halt
Floating multiply
Floating subtract
Halt and transfer
Invert indicators from AC
Load comple~ent address in index
Logical compare AC to storage
Load indicators
Load MQ register
Logical left shift
Logical right shift
Load index from address
Nonzero test
On test for indicators
"Or" to accumulator
"Or" to storage
Place complement address in index
Place AC in indicators
Place address in index
P-bit test
Place index in address
Rota te MQ Ie ft
Store logical word
Store address

136

3
66
68
68
66
29
20
90
45

~
75
90
80
73
73
73
73

3
82

122
75
81

6
66
66
29
46
81
75
75
88
81
40
81
41
66
21
25

137

STl Store indicators 129
STO Store 3
STQ Store MQ 6
STZ Store zero 19
SUB Subtract 3
SXA Store index in address 35
SXD Store index in decrement 35
TlX Transfer on index 35
TLQ Transfer on low MQ 94
TMl Transfer on minus 10
TNZ Transfer on nonzero 10
TPL Transfer on plus 10
TRA Transfer 10
TSX Transfer and set index 53
TXH Transfer on index high 31
TXl Transfer with index incremented 30
TXL Transfer on index low or equal 30
XCA Exchange AC and MQ 6
ZET Zero test 46

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0012
	0013
	0014
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137

