
Small universal Turing machines

Turlough Neary

A thesis submitted for the
degree of Doctor of Philosophy

Department of Computer Science
National University of Ireland, Maynooth

Supervisors: Dr. Damien Woods and Dr. J. Paul Gibson
External Examiner: Prof. Maurice Margenstern

Internal Examiner: Dr. James Power
Department Head: Dr. Adam Winstanley

October 2008

Acknowledgements

My supervisor Damien Woods deserves a special thank you. His help and
guidance went far beyond the role of supervisor. He was always enthusiastic,
and generous with his time. This work would not have happened without
him. I would also like to thank my supervisor Paul Gibson for his advice
and support.

Thanks to the staff and postgraduates in the computer science depart-
ment at NUI Maynooth for their support and friendship over the last few
years. In particular, I would like to mention Niall Murphy he has always
been ready to help whenever he could and would often lighten the mood in
dark times with some rousing Gilbert and Sullivan.

I thank the following people for their interesting discussions and/or ad-
vice: Maurice Margenstern, Yurii Rogozhin, Manfred Kudlek, Matthew
Cook, Liesbeth De Mol, Fred Lunnon, Ronan Reilly, James Power, and
Tom Naughton. I would also like to thank Tony Seda for his support and
allowing me the time to complete my work.

I would like to thank my parents Ann and Donal, my brother Fiachra,
and my sisters Sarah and Rebecca for their help and support over the years.
Finally, I would like to dedicate this work to the three most important people
in my life Astrid, Lelah, and Benjamin.

ii

Abstract

Numerous results for simple computationally universal systems are pre-
sented, with a particular focus on small universal Turing machines. These
results are towards finding the simplest universal systems. We add a new as-
pect to this area by examining trade-offs between the simplicity of universal
systems and their time/space computational complexity.

Improving on the earliest results we give the smallest known universal
Turing machines that simulate Turing machines in O(t2) time. They are also
the smallest known machines where direct simulation of Turing machines is
the technique used to establish their universality. This result gives a new
algorithm for small universal Turing machines.

We show that the problem of predicting t steps of the 1D cellular automa-
ton Rule 110 is P-complete. As a corollary we find that the small weakly
universal Turing machines of Cook and others run in polynomial time, an ex-
ponential improvement on their previously known simulation time overhead.
These results are achieved by improving the cyclic tag system simulation
time of Turing machines from exponential to polynomial.

A new form of tag system which we call a bi-tag system is introduced.
We prove that bi-tag systems are universal by showing they efficiently sim-
ulate Turing machines. We also show that 2-tag systems efficiently simulate
Turing machines in polynomial time. As a corollary we find that the small
universal Turing machines of Rogozhin, Minsky and others simulate Turing
machines in polynomial time. This is an exponential improvement on the
previously known simulation time overhead and improves on a forty-year old
result.

We present new small polynomial time universal Turing machines with
state-symbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These machines simu-
late bi-tag systems and are the smallest known universal Turing machines
with 5, 4, 3 and 2-symbols, respectively. The 5-symbol machine uses the
same number of instructions (22) as the current smallest known universal
Turing machine (Rogozhin’s 6-symbol machine).

We give the smallest known weakly universal Turing machines. These
machines have state-symbol pairs of (6, 2), (3, 3) and (2, 4). The 3-state
and 2-state machines are very close to the minimum possible size for weakly
universal machines with 3 and 2 states, respectively.

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1
1.1 History of simple universal models 2
1.2 Decidability and lower bounds 9
1.3 Thesis outline . 12

2 Preliminaries 15
2.1 Definitions . 15
2.2 Notes on universal Turing machines 17
2.3 Notational conventions . 19
2.4 Complexity analysis of previous simulations 20

3 O(t2) time universal machines 22
3.1 Introduction . 22
3.2 Preliminaries . 23
3.3 Construction of U3,11 . 28
3.4 Proof of correctness of U3,11 37
3.5 Polynomial time Curve . 44
3.6 Conclusion and future work 60

4 P-completeness of Rule 110 62
4.1 Introduction . 62
4.2 Cyclic tag systems . 64
4.3 Time efficiency of cyclic tag systems 65
4.4 P-completeness of Rule 110 76
4.5 Discusion . 77

5 Tag systems 78
5.1 Introduction . 78
5.2 Bi-tag systems simulate Turing machines 80
5.3 Time complexity of 2-tag systems 85

iv

5.4 Discussion . 89

6 Four small universal machines 90
6.1 Introduction . 90
6.2 Universal Turing machines 92
6.3 Discussion . 105

7 Small weakly universal machines 108
7.1 Introduction . 108
7.2 Rule 110 . 109
7.3 Three small weakly universal machines 110
7.4 Discussion . 117

8 Conclusion 119
8.1 Future work . 120

Notation 123

Bibliography 124

v

List of Figures

1.1.1 State-symbol plot of small universal Turing machines, exclud-
ing the work presented in this thesis 4

1.3.1 State-symbol plot of small universal Turing machines, includ-
ing the work presented in this thesis 13

3.1.1 State-symbol plot of small universal Turing machines, featur-
ing new O(t2) time machines 23

3.2.1 Universal Turing machine indexing an encoded transition rule 26
3.2.2 Universal Turing machine printing an encoded transition rule 27
3.2.3 Universal Turing machine simulating right and left moving

transition rules . 28
3.4.1 Universal Turing machine simulating a right moving transi-

tion rule (special case) . 38

4.3.1 Cyclic tag system simulating a transition rule 68
4.3.2 Cyclic tag system simulating a transition rule that increases

tape length . 73

5.1.1 State-symbol plot of small universal Turing machines, featur-
ing new polynomial time curve 79

5.2.1 Clockwise Turing machine encoding of a Turing machine con-
figuration . 81

5.2.2 Bi-tag system simulating a clockwise transition rule 84

6.1.1 State-symbol plot of small universal Turing machines, featur-
ing new bi-tag simulators . 91

6.2.1 Universal Turing machine indexing an encoded production . . 93
6.2.2 Universal Turing machine indexing an encoded production . . 94

7.1.1 State-symbol plot of small universal Turing machines, featur-
ing new weakly universal machines 110

7.2.1 Seven consecutive timesteps of Rule 110 111

vi

1

Introduction

Since the advent of the Church-Turing thesis there has been much work to
simplify computationally universal systems. Now, seventy years on, the size
of the simplest universal systems is quite amazing. In this thesis we examine
some of the most intuitively simple universal models of computation includ-
ing Turing machines [Tur37, Min67, HU79], tag systems [Pos43, Min67] and
cellular automata [vN66]. We improve the state of the art in many of these
simple models by giving even simpler models. Furthermore, moving in a new
direction we examine possible trade-offs between the simplicity of a model
and its time/space resource efficiency.

The problem of finding simple universal systems is in itself an interest-
ing one and also has a number of applications. Perhaps the most obvious
is in finding boundaries between universality and non-universality. Another
application is that giving increasingly simple computationally universal sys-
tems in many cases simplifies the problem of emulating universal systems.
This simplifies proving universality results for other computational systems.
It also simplifies the problem of proving various questions about the be-
haviour of a dynamical system are undecidable. For example a dynamical
system emulates a universal system then that dynamical system must have
some undecidable properties.

Giving universal systems that are time efficient1 also has important ap-
plications. For instance simulating an existing efficient universal system in
polynomial time is one way to prove that another computational model is ef-
ficient. Another application would be determining whether a computational
model may be predicted exponentially faster (in parallel) than explicit step-
by-step simulation. If a computational model simulates Turing machines
in polynomial time then such exponentially fast prediction is not possible
unless P = NC.

1

1 Introduction 2

1.1 History of simple universal models

In Turing’s paper [Tur37] he defines the machine model that is now known
as the Turing machine. It has become widely accepted that the Turing ma-
chine model captures the notion of algorithm. In his paper, Turing also
gives an instance of his model, a universal Turing machine, that simulates
the behaviour of any Turing machine when given a description (suitable
encoding) of the machine and its input. This reduces the problem of simu-
lating all Turing machines to the problem of simulating any universal Turing
machine.

Independently of Turing, Emil Post [Pos36] gave a machine similar
to that of Turing. The basic operations employed by these two types of
machines are essentially the same. In [Pos36], Post gives no details of how
his machines would solve specific problems or encode them as input to his
machines. Despite this, Post hypothesised that his machine would be proved
equivalent to Church’s λ-calculus and thus, by inference, Turing machines.
Unlike Turing’s machines, Post’s machines2 used only 2 symbols and so, in
the wake of the Church-Turing thesis, Post’s hypothesis could be construed
as an early conjecture that 2-symbol Turing machines are universal.

Years later, Moore [Moo52] noted that 2-symbol machines were univer-
sal as any Turing machine could be converted into a 2-symbol machine by
encoding the symbols in binary. In the same paper Moore used this ob-
servation to give a universal 3-tape machine with 2 symbols and 15 states.
Moore’s machine uses only 57 instructions, each instruction being a sextuple
that either moves one of its tape heads or prints a single symbol to one of
its tapes. This result has been largely ignored in the literature despite being
the first small universal Turing machine.

In the seminal paper on small universal Turing machines, it was proved
by Shannon [Sha56] that both 2-state and 2-symbol universal Turing ma-
chines existed. Shannon’s paper ends with the sentence: “An interesting
unsolved problem is to find the minimum state-symbol product for a univer-
sal Turing machine.” This sparked a vigorous competition between Minsky
and Watanabe to see who could come up with the smallest universal Turing
machine [Min60a, Wat60, Wat61, Min62a, Min67, Wat72]. The game was
now afoot!

1Here we say a system is time efficient if it simulates Turing machines in polynomial
time.

2In later papers when authors [Fis65, AF67] refer to Post machines they mean a (Tur-
ing) machine whose instructions are defined by quadruples instead of quintuples and any
finite tape alphabet. This follows from a later paper by Post [Pos47] where he adopts
quadruples in his “formulation of a Turing machine.” Davis [Dav58] also adopts this
quadruples formalism but does not refer to such machines as Post machines.

1 Introduction 3

states symbols state-symbol author

product

m 2 2m Shannon [Sha56]

2 n 2n Shannon [Sha56]

12 6 72 Takahashi [Tak58] (mentioned in [Wat61])

10 6 60 Ikeno [Ike58] (also appears in [Min60a])

17 3 51 Watanabe [Wat60] (mentioned in [Wat61])

8 6 48 Watanabe [Wat60] (mentioned in [Min62a])

25 2 50 Minsky [Min62b]

7 6 42 Minsky [Min60a]

8 5 40 Watanabe [Wat61]

9 4 36 Alan Tritter (mentioned in [Min62a])

6 5 30 Watanabe [Wat61]†

25 2 50 Minsky [Min62b]

6 6 36 Minsky [Min62a]

7 4 28 Minsky [Min62a, Min62b]

9 3 27 Goto (mentioned in [Wat72])

7 3 21 Watanabe (mentioned in [Wat72, Noz69])†

5 4 20 Watanabe [Wat72]†

Table 1.1.1: Table of small semi-weakly and standard universal Turing ma-
chines up until 1972. Semi-weakly universal machines are denoted by †.

1.1.1 Standard universal Turing machines

The Turing machine model that we choose as standard has a single one-
dimensional tape, one tape head, and is deterministic [HU79]. Some of
the earliest small standard universal machines are given in Table 1.1.1.
One particular machine worthy of note is the 7-state 4-symbol universal
Turing machine of Minsky [Min62a, Min67]. Minsky’s machine simulates
Turing machines via 2-tag systems, which were proved universal by Cocke
and Minsky [CM64]. The technique of simulating 2-tag systems, pioneered
by Minsky, was extended by Rogozhin [Rog79, Rog82] to give the (then)
smallest known universal Turing machines for a number of state-symbol
pairs. These 2-tag simulators were subsequently reduced in size by Ro-
gozhin [Rog92, Rog93, Rog96, Rog98], Kudlek and Rogozhin [KR02], and
Baiocchi [Bai01]. The smallest 2-tag simulators are plotted as hollow circles
in Figure 1.1.1. These machines induce a universal curve.

1 Introduction 4

bc : universal, 2-tag simulation, O(t222t)

ld : semi-weakly universal, direct simulation, O(t2)

l : semi-weakly universal, cyclic tag simulation, O(t222t)

rs : weakly universal, Rule 110 simulation, O(t222t)

: universal curve

: weakly universal curve

: decidable halting problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

bc

bc

bc

bc

bc

bc

bc

ld

ld

l

l

l

rs

rs

rs

rs

Figure 1.1.1: State-symbol plot of small universal Turing machines, exclud-
ing the work presented in this thesis. The simulation technique is given
for each group of machines. Also, we give the simulation time overheads in
terms of simulating any single tape, deterministic Turing machine that runs
in time t.

1.1.2 Weakly and semi-weakly universal Turing machines

Over the years, small universal machines were given for a number of vari-
ants on the standard Turing machine model. By generalising the model we
often find smaller universal programs. One variation on the standard Turing
machine is to allow an infinitely repeated word to one side of its input, and
on the other side a (standard) infinitely repeated blank symbol. We call
such a machine semi-weak. In 1961 Watanabe [Wat61] gave a semi-weakly
universal Turing machine with 6 states and 5 symbols. Watanabe improved
on his earlier machine to give 5-state, 4-symbol and 7-state, 3-symbol semi-
weakly universal machines [Wat72]. These semi-weak machines are plotted
as hollow diamonds in Figure 1.1.1.

Recently, Woods and Neary [WN07b, WNb] have given semi-weakly
universal machines with state-symbol pairs of (2, 14), (3, 7), and (4, 5) that

1 Introduction 5

states symbols tape tapes author

dimension

15 2 1 3 Moore [Moo52]

1 2 1 4 Hooper [Hoo63, Hoo69]†

2 3 1 2 Hooper [Hoo63, Hoo69]

8 4 2 1 Wagner [Wag73]

2 7 2 1 Ottmann [Ott75a]†

10 2 2 1 Ottmann [Ott75b, KBO77]†

6 3 2 1 Ottmann [Ott75b, KBO77]†

4 4 2 1 Ottmann [Ott75b, KBO77]†

2 6 2 1 Kleine-Büning & Ottmann [KBO77]†

1 7 3 1 Kleine-Büning & Ottmann [KBO77]†

2 5 2 1 Kleine-Büning & Ottmann [KBO77]†

2 3 2 1 Kleine-Büning & Ottmann [KBO77]†

4 5 2 1 Kleine-Büning & Ottmann [KBO77]

3 6 2 1 Kleine-Büning & Ottmann [KBO77]

10 2 2 1 Kleine-Büning [KB77]

2 5 2 1 Kleine-Büning [KB77]

2 4 2 1 Priese [Pri79]

2 2 2 2 Priese [Pri79]

4 7 1 1 Pavlotskaya [Pav96]‡

2 5 1 1 Margenstern & Pavlotskaya [MP95b]‡

2 3 1 1 Margenstern & Pavlotskaya [MP03]‡

Table 1.1.2: Table of small non-standard universal Turing machines, ex-
cluding semi-weak machines. Weakly universal machines are denoted by †.
Turing machines that are universal when coupled with a finite automaton
are denoted by ‡.

simulate cyclic tag systems. These semi-weak machines are plotted as solid
diamonds in Figure 1.1.1.

A further generalisation on the standard model is to allow the blank
portion of the Turing machine’s tape to have an infinitely repeated word to
the left, and another to the right. We refer to such universal machines as
weakly universal Turing machines. Cook and Eppstein [Coo04], and Wol-
fram [Wol02] recently gave weakly universal Turing machines, smaller than
Watanabe’s semi-weak machines, that simulate the universal cellular au-
tomaton Rule 110. These machines have state-symbol pairs of (7, 2), (4, 3),
(3, 4), and (2, 5) and are plotted as hollow squares in Figure 1.1.1. (Note
that David Eppstein constructed the (7, 2) machine to be found in [Coo04].)

1 Introduction 6

1.1.3 Other non-standard universal Turing machines

Weakness has not been the only generalisation on the standard model in
the search for small universal Turing machines. We give some notable ex-
amples here, others are to be found in Table 1.1.2. Hooper [Hoo63, Hoo69]
gave a universal machine with 2 states, 3 symbols, and 2 tapes, and an-
other with 1 state, 2 symbols and 4 tapes. One of the tapes in Hooper’s
4-tape machine is circular and contains the simulated program. His ma-
chine would also operate correctly if this circular tape is replaced with a
semi-weak tape. Thus Hooper’s 4-tape machine could be considered semi-
weak. Priese [Pri79] gave a 2-state, 4-symbol machine with a 2-dimensional
tape, and a 2-state, 2-symbol machine with a pair of 2-dimensional tapes.
Margenstern and Pavlotskaya [MP95b, MP03] gave a 2-state, 3-symbol Tur-
ing machine that uses only 5 instructions and is universal when coupled with
a finite automaton.

1.1.4 Universal Turing machines with restrictions

If we restrict the standard Turing machine model the problem of finding ma-
chines with small state-symbol products becomes more difficult. Non-erasing
Turing machines are a restriction of Turing machines that are permitted
to overwrite blank symbols only. Moore [Moo52] mentions that Shannon
had proved that non-erasing Turing machines simulate Turing machines,
however this result was never published. Shortly after, Shannon proved
2-symbol Turing machines universal, Wang [Wan57] proved 2-symbol non-
erasing Turing machines universal. Later, Minsky [Min61] proved the same
result as Wang using a different technique. Minsky proved 2-tape non-
writing Turing machines were universal and showed 2-symbol non-erasing
Turing machines simulate these non-writing machines. More recently, Mar-
genstern [Mar92, Mar93, Mar94, Mar95a, Mar95b, Mar01] has constructed
a number of small non-erasing universal machines with further restrictions.

Fischer [Fis65] gives universality results for Turing machines that use
restricted forms of transition rules. Fischer gives results for variations on
the quadruple formulation (see Footnote 1.1). In one result he proves 3-state
Post machines universal.

1.1.5 Universal tag systems

Post [Pos43] proved that a restriction of his canonical systems, called normal
systems, are universal. Post also wondered if tag systems, a restriction of
normal systems, had an unsolvable prediction problem. Minsky [Min60b,
Min61] settled this problem when he proved that tag systems with dele-
tion number 6 (called 6-tag systems) simulate Turing machines and hence

1 Introduction 7

are universal. Later, Cocke and Minsky [Min62b, CM63, CM64] proved
that 2-tag systems are universal by showing that they simulate Turing ma-
chines. Their technique used productions (appendants) of length 4 or less.
Wang [Wan63] further improved on this result by showing that 2-tag sys-
tems with productions of length 3 or less also simulate Turing machines.
Wang also proved the universality of lag systems, a variation of tag systems.
Recently, cyclic tag systems were proved universal [Coo04, Wol02]. Kudlek
and Rogozhin [KR01b, KR01a] introduced another tag like system called a
circular Post machine. The operation of a circular Post machine is also sim-
ilar to that of a Turing machine with a circular tape and a tape head that
only moves one direction. Small universal circular Post machines have been
given by Kudlek, Rogozhin and Alhazov [KR01b, KR01a, KR03, AKR02].

1.1.6 Simple universal cellular automata

Since cellular automata [vN66] were first proved universal there have been
a number of incremental steps towards giving simpler universal cellular au-
tomata. Here we consider a cellular automata to be universal if it is Tur-
ing universal. Below we give results only for the most common types of
cellular automata, those with one-dimensional nearest neighbour and two-
dimensional von Neumann (5 neighbours) and Moore neighbourhoods (8
neighbours).

Codd [Cod68] gave a universal cellular automaton with von Neumann
neighbourhood and 8 states on a blank background. Banks [Ban70] re-
duced the number of states needed for universality to 3 for a blank back-
ground and 2 for a periodic background. Conway [BCG82] proved that
with a Moore neighbourhood it is possible to have universality with only
2 states on a blank background. Smith [Smi71], gave a one-dimensional
nearest neighbour cellular automaton with 18 states that is universal on a
blank background. Albert and Culik [AC87] reduced the number of states
sufficient for universality, on a blank background, to 14. Lindgren and Nor-
dahl [LN90] further reduced the number of states needed for universality
to 9 on a blank background and 7 on a periodic background. Recently,
Cook [Coo04] proved that Rule 110, a one-dimensional nearest neighbour
cellular automaton with 2 states, is universal on a periodic background (a
sketch of Cook’s proof also appears in [Wol02]). There have been many other
forms of simple cellular automata given. Both Albert and Culik [AC87], and
Lindgren and Nordahl [LN90], have given one-dimensional universal cellular
automata with neighbourhoods greater than three. Some other examples of
simple universal cellular automata have been given for reversible cellular au-
tomata [Tof77, MH89, MF05], majority voting cellular automata [Moo97a],
and cellular automata in the hyperbolic plane [HM03, IIM07, Mar06].

In the literature the stronger notion of intrinsic universality [Oll02] is

1 Introduction 8

also used. An intrinsically universal cellular automaton simulates other cel-
lular automata in linear time using a constant number of cells to encode a
single cell. Ollinger [Oll02] gave a one dimensional nearest neighbour cel-
lular automaton that is intrinsically universal and has only 6 states. Later
Richard [Ric06] improved this result by giving a 4-state intrinsically univer-
sal cellular automaton.

1.1.7 Other simple universal systems

Many biologically inspired computational models have also been simplified
to give simple universal models. Some examples of these are neural net-
works [MP43, Sie98], H systems [Hea87, PRS98] (also called splicing sys-
tems), P systems [Pău00, Pău02] (also called membrane systems), and spik-
ing neural P systems [IPY06]. Neural networks have been around since the
1940s and more recently a number of different authors have given increas-
ingly simple universal neural networks [Ind95, KCG94, KS96, Pol87, SM99,
SS91, SS95]. In 1987, Head systems were born. Some results from the area of
simple universal Head systems are to be found in [FMKY00, HM05, MR02].
Membrane computing has received much attention since Păun introduced
this model of computation. Some results relating to small universal mem-
brane systems can be found in [AFR06, AR06, CVMVV07, FO06, NPRP06,
RV06]. Spiking neural P systems [IPY06] are a very new model inspired
by a fusion of spiking neural networks and P systems. These systems have
already given rise to a number of number of small spiking neural P sys-
tems [PP07, ZZP, Nea08a, Nea08b].

Minsky [Min67] proved that register machines with only 2 registers are
universal. Later focusing on a different parameter, Korec [Kor96] proved
that between 14 and 32 instructions are sufficient for universality depend-
ing on the type of instructions allowed. Morita [Mor96] has proved that re-
versible registers machines with 2 registers are universal. Benett [Ben73] has
shown that 3-tape reversible Turing machines are universal. Morita [MSG89]
improved on this result proving that reversible Turing machines with 1 tape
and 2 symbols are universal. More recently Morita and Yamaguchi [MY07]
gave a universal reversible Turing machine with 1 tape, 17 states, and 5
symbols.

The very earliest proofs of universality, the negative solution to the
Entscheidungsproblem, and the first problems proved undecidable are to be
found in Davis’s [Dav65] book. Minsky’s [Min67] book contains a number
of early results on simple computationally universal models. More recently
Margenstern [Mar00] gave a survey on the subject that catalogues many
interesting results. Also, Delvenne et al. [DKB04, ?] gives universality results
for dynamical systems. There are a multitude of other simple universal
models to be found in the literature but we will stop here.

1 Introduction 9

1.2 Decidability and lower bounds

The pursuit to find the simplest universal models must also involve the
search for lower bounds. To simplify our point we will take the example of
Shannon’s problem of finding the minimal state-symbol product for a uni-
versal Turing machine. For Shannon’s problem, lower bounds involve finding
the largest state-symbol product which, in some sense, is non-universal. One
approach is to settle the decidability of the halting problem. However, we
will see that this approach is not suitable for all models. We give an overview
of decidability results for some of the models from Section 1.1.

Shannon [Sha56] claimed that 1-state Turing machines are non-universal.
Fischer [Fis65] and Nozaki [Noz69] both note that Shannon’s definition of
universal Turing machine is too strict and so his proof is not sufficiently
general. On page 281 of his book, Minsky [Min67] mentions that he and
Bobrow proved that the halting problem is decidable for Turing machines
with 2 states and 2 symbols “by a tedious reduction to thirty-odd cases (un-
publishable).” It is currently known that the halting problem is decidable for
machines with the following state-symbol pairs (2, 2) [DK89, Kud96, Pav73],
(3, 2) [Pav78], (2, 3) (claimed by Pavlotskaya [Pav73]), (1, n) [Her66a, Her66b,
Her68c, Noz69, Fis65] and (n, 1) (trivial), where n > 1. These results induce
the decidable halting problem curve in Figure 1.1.1. Also, these decidability
results imply that a universal Turing machine, that simulates any Turing
machine M and halts if and only if M halts, is not possible for these state-
symbol pairs. Hence these results give lower bounds on the size of universal
machines of this type. While it is trivial to prove that the halting problem
is decidable for weak machines with a halting state and state-symbol pairs
of the form (n, 1), it is not known whether the other decidability results
given above generalise to weak Turing machines that have a halting state.
More recently, Pavlotskaya [Pav02] has shown that the halting problem is
decidable for machines with less than 5 instructions.

Nozaki [Noz69] claims the non-universality of Turing machines with
state-symbol pairs of (2, 2) and (3, 2). Kryukov [Kry71] claimed that the
state-symbol pair (1, n) is non-universal and used a computer to solve the
(3, 2) case. However, in the English translation versions of these papers
insufficient details are given to reconstruct these proofs. More details of the
technique used by Kryukov is available in [Kry67].

Herman [Her66a, Her68a, Her68c] proved the halting problem decid-
able for a number of Turing machine variants with 1-state, including Turing
machines with a single 2-dimensional tape. Wagner [Wag73] generalised
Kryukov’s [Kry67] non-universality result for 2-state, 2-symbol machines to
Turing machines with n-dimensional tapes. Aandrea and Fischer [AF67]

1 Introduction 10

proved the decidability of the halting problem for 2-state Post machines
(see footnote 1.1). Fischer [Fis65] gives universality results for Turing ma-
chines that use restricted forms of transition rules. Fischer gives non-
universality [Fis65] results for variations on the quadruple formulation (see
Footnote 1.1).

Margenstern [Mar95a, Mar97b, Mar97a] introduced a useful notion, that
of decidability criterion, which we now define. Let f be a positive integer-
valued function defined on a set of Turing machines M1 such that, there
is an integer d where for all machines with f < d, the halting problem is
decidable and for each f > d a universal machine exists. We say that f has
frontier value of d for M1. Also, d may be described as a boundary between
universality and non-universality in the following sense. A decidability cri-
terion f implies that a universal Turing machine, that simulates any Turing
machine M and halts if and only if M halts, is not possible in M1 for f < d.

Recall from Section 1.1.3 that Margenstern and Pavlotskaya gave a uni-
versal (Turing machine, finite automaton) pair where the Turing machine
uses only 5 instructions. Margenstern and Pavlotskaya [MP03] also show
that the halting problem is decidable for all such pairs if the Turing ma-
chine has 4 instructions. Their results give a frontier value of 5 instructions
for the Turing machine in such pairs. Hence they have given the smallest
possible Turing machine that is universal in this sense. Note that here we
are considering the notion of non-universality given in the final sentence of
the previous paragraph.

The following decidability results of Margenstern and Pavlotskaya are
for 2-symbol Turing machines. One decidability criterion they use is the
number of colours. The number of colours of a machine is the number of
distinct triples (σ,D, δ), where some transition rule in the machine has read
symbol σ, move direction D, and write symbol δ. Pavlotskaya [Pav73, Pav75]
established a frontier value of 3 colours for Turing machines. Margen-
stern [Mar93] established a frontier value of 5 colours for non-erasing Turing
machines. Let l be the number of left instructions and r be the number of
right instructions in a machine. The minimum of l and r is called the later-
ality number of a machine. Margenstern and Pavlotskaya [Pav73, MP95a]
established a frontier value of 2 for the laterality number of Turing machines.
Margenstern [Mar95a, Mar97b] established a frontier value of 3 for the lat-
erality number of non-erasing Turing machines. The above results involved
the construction of a number of different universal Turing machines. Mar-
genstern gives a 125-state, 2-symbol non-erasing machine that uses only 5
colours [Mar93], a 218-state, 2-symbol non-erasing machine that uses only
3 left-move instructions [Mar95a], a 59-state, 2-symbol standard machine
that uses only 6 left-move instructions [Mar01], and a 190-state, 2-symbol
machine that uses only 3 left-move instructions [Mar01].

There are also decidability results given for other models. Wang [Wan63]
showed that the reachability problem, and hence the halting problem, is de-

1 Introduction 11

cidable for 1-tag systems. Stephen Cook [Coo66] proved that the reachability
problem, and hence the halting problem, is decidable for non-deterministic
1-tag systems. Post [Pos65] mentioned that he solved the reachability prob-
lem for 2-tag systems with productions of length strictly less than 3; how-
ever he did not publish this result. Recently, De Mol [De Mol07] proved the
reachability problem decidable for this class of tag systems.

A number of small Turing machines have been given for other inter-
esting problems. Many of these machines lie between the current univer-
sality curve, and the current decidable halting problem curve. Margen-
stern [Mar98, Mar00] gives machines that simulate iterations of the Col-
latz function (3x + 1 problem) with state-symbol pairs of (11, 2), (5, 3),
(4, 4), (3, 6) and (2, 10). Later, Baiocchi [Bai98] reduced the size of some of
these machines to give Turing machines with state-symbol pairs of (10, 2),
(5, 3), (4, 4), (3, 5) and (2, 8). Michel [Mic04, Mic93] has shown that there
are Turing machines that simulate iterations of Collatz-like functions with
state-symbol pairs of (2, 4), (3, 3), and (5, 2). Kudlek [Kud96] has given a
4-state, 4-symbol machine that accepts a context-sensitive language. These
machines would seem to suggest that it will be difficult to improve on the
current decidable halting problem curve in Figure 1.1.1.

An interesting problem, introduced by Tibor Rado [Rad62], is the Busy
Beaver problem. The problem is as follows. Let Tx,2 be the set of all binary
Turing machines with x states. For a given x determine the maximum
number of non-blank symbols on the tape of any machine in Tx,2 when it
halts, having started on a blank tape (sometimes the maximum time before
halting is also considered). To date the problem has been solved for the
following values Rado [Rad62] x = 2, Lin and Rado [LR65] x = 3 and
Brady [Bra83] x = 4. The best results known for x = 5 and x = 6 are
given by Marxen3 and Buntrock [MB90] and halt in 47,176,870 timesteps
and 3 × 101730 timesteps, respectively. Michel [Mic93, Mic04] gives results
for a generalisation of the problem by allowing more than 2 tape symbols.
He has given results for the following state-symbols pairs (2, 3), (3, 3) and
(2, 4). Lafitte and Papazian [LP07] proved that the 2-state, 3-symbol result
given by Michel’s machine solves the problem for this class of machines.
They also gave an analysis of some other classes.

There are many other decidability results many of which are to be found
in Margenstern’s [Mar00] survey. Also, Delvenne [?] gives decidability results
for dynamical systems.

1 Introduction 12

1.3 Thesis outline

The results presented in this thesis are concerned with simple universal
models of computation with a particular focus on small universal Turing
machines. Many of our results may be thought of as a continuation of
the work mentioned in the previous sections. However, a new aspect is
added to the study of simple universal systems as we also focus on the
resource usage, such as the time and space complexity [Pap95], of such
models. The efficiency of many existing simple universal systems is improved
and new efficient systems are given. Many of our results are to be found in
Figure 1.3.1. Improvements in the simulation time of previously constructed
machines may seen by comparing Figures 1.1.1 and 1.3.1.

Chapter 2 gives time/space complexity analysis of previous simple uni-
versal models. It also contains important definitions and discussions, as well
as technical information regarding the notation used in the thesis.

Notice from Figure 1.1.1 that when work began on this thesis all of
the smallest universal Turing machines were exponentially slow. The results
in Chapter 3 were aimed at giving small polynomial time universal Turing
machines. Let t be the running time of any deterministic single tape Turing
machine M . Then, the main result in Chapter 3 states that there exists
deterministic O(t2) polynomial time universal Turing machines with state-
symbol pairs of (3, 11), (5, 7), (6, 6), (7, 5) and (8, 4). To date, these are the
smallest known standard machines that simulate Turing machines in O(t2)
time. They are also the smallest known standard machines where direct
simulation of Turing machines is the technique used to establish their uni-
versality. Each of these machines is plotted as a solid circle in Figure 1.3.1.
This result established a polynomial time universal curve and gave a new
simulation algorithm for universal Turing machines.

Our search to find simple models led us to cyclic tag systems and
Rule 110. Cook [Coo04] proved that Rule 110 is universal. In Chapter 4
we prove that Rule 110 is an efficient simulator of Turing machines, an ex-
ponential improvement on the previous time overhead. Rule 110 simulates
Turing machines via cyclic tag systems. We improve the cyclic tag system
simulation time of Turing machines from exponential to polynomial. As a
corollary, we find that the prediction problem for Rule 110 is P-complete.
This is the simplest cellular automaton proved to be P-complete. As an-
other corollary, all of the small weak and semi-weak Turing machines in
Figure 1.3.1 now simulate in polynomial time, an exponential improvement.

In Chapter 5 our attention turns to tag systems. 2-tag systems are a
type of Post system that were originally proved to simulate Turing machines,
by Cocke and Minsky. Their simulation is exponentially slow. Here we give a
proof that 2-tag systems simulate Turing machines efficiently in polynomial

3See webpage: http://www.drb.insel.de/̃ heiner/BB/

1 Introduction 13

b : universal, direct simulation, O(t2)

bc : universal, 2-tag simulation, O(t4 log2 t)

u : universal, bi-tag simulation, O(t6)

ld : semi-weakly universal, direct simulation, O(t2)

l : semi-weakly universal, cyclic tag simulation, O(t4 log2 t)

rs : weakly universal, Rule 110 simulation, O(t4 log2 t)

r : weakly universal, Rule 110 simulation, O(t4 log2 t)

: universal curve

: weakly universal curve

: decidable halting problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

b

b

b

b

bu

u

u

u

r

r

r

bc

bc

bc

bc

bc

bc

bc

l

l

l

ld

ld

rs

rs

rs

rs

Figure 1.3.1: State-symbol plot of small universal Turing machines, includ-
ing the work presented in this thesis. The (improved) simulation time and
simulation technique is given for each group of machines. Each of our new
universal Turing machines is represented by a solid shape.

time. As an immediate corollary, all of the small universal Turing machines
that simulate 2-tag systems (see Figure 1.3.1) now simulate in polynomial
time, an exponential improvement. This result also improves the efficiency
of a number of other models that simulate 2-tag systems. In addition, we
give a new variant on tag systems called bi-tag systems, and prove that they
are efficient simulators of Turing machines.

In Chapter 6 we present small polynomial time universal Turing ma-
chines with state-symbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These ma-
chines simulate bi-tag systems and are plotted as triangles in Figure 1.3.1.
They are the smallest known standard universal Turing machines with 5, 4,
3, and 2 symbols, respectively. Our 5-symbol machine uses the same num-
ber of instructions (22) as the smallest known universal Turing machine by
Rogozhin.

In Chapter 7 we give small weakly universal machines with state-symbol
pairs of (6, 2), (3, 3) and (2, 4). These machines improve on the size of

1 Introduction 14

the Rule 110 simulators given by Cook and Eppstein [Coo04], and Wol-
fram [Wol02]. The machines we present here also simulate Rule 110 and are
the smallest known weakly universal Turing machines. Our machines are
plotted as solid squares in Figure 1.3.1.

Finally, in Chapter 8 we discuss our results and possible future work.
Much of the work that we present and survey here has previously been
published, and may be found in [Nea06, NW06c, NW06a, NW, NW07a,
WN06c, WN06a, WN07a, WNa].

2

Preliminaries

We begin by giving definitions that are used throughout the thesis. We then
discuss definitions of universal Turing machine and simulation that are given
by a number of different authors. Next we establish notational conventions
used in the thesis. Finally, we give a brief time/space complexity analysis
of previous small universal Turing machines.

2.1 Definitions

The Turing machine model we choose has a single one-dimensional tape, one
tape head, and is deterministic [HU79]. We choose this particular model
as standard because it is common throughout the small Turing machine
literature.

Definition 2.1.1 (Turing machine) A Turing machine is a tuple M =
(Q,Σ, b, f, q1,H). Here Q and Σ are the finite sets of states and tape symbols
respectively. The blank symbol is b ∈ Σ, q1 ∈ Q is the start state, and H ⊆ Q
is the set of halt states. The transition function f : Q×Σ→ Σ×{L,R}×Q
is defined for all q ∈ Q−H. If q ∈ H then the function f is undefined on
at least one element of q ×Σ.

We write f as a list of transition rules. Each transition rule is a quintuple
t = (qi, σ1, σ2,D, qj), with initial state qi, read symbol σ1, write symbol σ2,
move direction D and next state qj. The Turing machine definition we use
here is standard in the literature. However, it is often common to have a set
of input symbols (not including the blank symbol) that is a proper subset
of the tape alphabet. This would not be suitable for our purposes.

Definition 2.1.2 (Weak Turing machine) A weak Turing machine is a
tuple M = (Q,Σ, r, l, f, q1,H). Here r ∈ Σ∗ and l ∈ Σ∗ are fixed constant
length words called the right blank word and the left blank word, respectively.
Definition 2.1.1 defines the remaining elements of the tuple M .

Another related model is the semi-weak Turing machine. A semi-weak
Turing machine has an infinitely repeated word to one side of its input, and
on the other side a (standard) infinitely repeated blank symbol. Semi-weak

15

2 Preliminaries 16

machines are a generalisation on the standard model and a restriction of the
weak model.

Definition 2.1.3 (Turing machine configuration) A configuration of a
Turing machine consists of the current state qi, the read symbol σ0 and its
tape contents . . . σ−3 σ−2 σ−1 σ0 σ1 σ2 σ3

Example 2.1.1 (Turing machine configuration) In the thesis we rep-
resent Turing machine configurations as follows:

qiqiqi, . . . σ−3 σ−2 σ−1 σ0 σ1 σ2 σ3 . . .

where qi is the current state, . . . σ−3 σ−2 σ−1 σ0 σ1 σ2 σ3 . . . is the tape con-
tents and the tape head location given by an underline is under the read
symbol σ0.

Definition 2.1.4 (Turing machine computation step) If the current
state is qi and the read symbol is σ1 then the transition rule (qi, σ1, σ2,D, qj)
is applied to the configuration in the following way. The symbol under the
tape head σ1 is replaced with σ2, qj becomes the new current state, and if
D = L the tape head moves one cell to the left and if D = R the tape head
moves one cell to the right.

A computation step is deterministic. In the sequel we write c1 ⊢ c2 if a
configuration c2 is obtained from c1 via a single computation step.

Example 2.1.2 (Turing machine computation step) We show the ex-
ecution of the transition rule (qi, σ0, σx, R, qj).

qiqiqi, . . . σ−3 σ−2 σ−1 σ0 σ1 σ2 σ3 . . .

⊢ qjqjqj, . . . σ−3 σ−2 σ−1 σx σ1 σ2 σ3 . . .

Definition 2.1.5 (Turing machine computation) A computation is a
finite sequence of configurations c1, c2, . . . , ct of a Turing machine M that
ends in a terminal configuration ct where ∀i, ci ⊢ ci+1. Also, we write
M(c1) = ct.

Definition 2.1.6 (Turing machine halting configuration) A halting
configuration is a terminal configuration where no transition rule is defined
for the current state q ∈ H and the read symbol.

2 Preliminaries 17

Definition 2.1.7 (Universal Turing machine) A Turing machine U is
universal if there exists recursive functions h and f such that

M(c) = h(U(f(g(M, c)))) (2.1.1)

where M is any Turing machine, c is a configuration of M , g(M, c) is the
Gödel number of the ordered pair (M, c), f maps g(M, c) to a configuration
of U , and h maps a terminal configuration of U to a terminal configuration
of M .

The function f is injective and the function h is total and surjective. Also,
the encoding function f and decoding function h are both recursive. The
latter requirement, which is standard in the literature, ensures that the
universality lies in the machine that we claim is universal and not in the
encoding or decoding functions.

With the exception of some minor details, Definition 2.1.7 is equivalent to
Priese’s [Pri79] definition of universal Turing machine. It is also equivalent
to Davis’s [Dav57] definition if the terminal configuration is always assumed
to be a halting configuration. Throughout the thesis it is assumed that
the terminal configuration is a halting configuration unless explicitly stated
otherwise.

In the definition of universal Turing machine it is also standard in the lit-
erature [Dav57, Noz69, Pri79] to use a Gödel numbering of Turing machines
and Turing machine configurations as the domain of the encoding function.
This ensures that: (1) there is a standard representation of (Turing ma-
chine, Turing machine configuration) pairs, and (2) the domain of f is the
set of all (Turing machine, Turing machine configuration) pairs. In practice
when constructing a universal Turing machine the domain of the encoding
function is usually the table of behaviour (e.g. the set of transition rules) of
a Turing machine and a Turing machine configuration. It is sufficient that
the set of (Turing machines, Turing machine configuration) pairs that define
the domain of our encoding function admit a Gödel numbering of all such
pairs.

2.2 Some notes on universal Turing machines

We discuss definitions of universal Turing machine and then take a brief look
at some previous definitions of universal Turing machine. Following this we
consider the problem of defining the notion of simulation.

2.2.1 Previous definitions of universal Turing machine

Davis [Dav56] gave the following definition of universal Turing machine. A
Turing machine is universal if the set of configurations which lead to a halt-
ing configuration is recursively enumerable complete. A set C is recursively

2 Preliminaries 18

enumerable complete if it is recursively enumerable and for every recur-
sively enumerable set R there is a recursive function f such that if x ∈ R,
f(x) ∈ C. Later, Davis [Dav57] gave a more restricted definition which also
required that the output of the machine being simulated be retrievable from
the halting configuration of the universal machine via a recursive function.
Davis’s earlier definition requires only that the universal machine halts if
and only if the simulated machine halts. Davis also proves that machines
which obey his later definition also obey his earlier definition and that the
converse of this is false.

Priese [Pri79] gives a definition of universal Turing machine that differs
from Davis’s definition in the following respect. Priese does not require
the universal machine to halt. Priese’s universal machine computes until a
configuration at time t containing the encoded output is reached, such that
a recursive function may be applied to any configuration after time t − 1
to retrieve the output. Note that many different configurations may encode
the same output.

Nozaki [Noz69] discusses the notion of universal Turing machine and
gives a definition of universal Turing machine. Like Priese, Nozaki’s defi-
nition does not require his universal machine to halt when the machine it
simulates halts. Also, Nozaki’s definition involves emulating the sequence
of configurations of the machine being simulated. The definitions of Davis
and Priese do not have this restriction. We discuss some of the implications
of this restriction in the next section.

Finally, we note that to date all of the small universal Turing machines
constructed are Nozaki-universal and Priese-universal. However, some of
these machines are not Davis-universal as they do not halt.

2.2.2 The simulation of one abstract machine by another

The problem of defining simulation of one abstract machine by another has
been discussed by a number of different authors [Fis65, Her68b, vEB90].
To quote van Emde Boas [vEB90]: “it is hard to define simulation as a
mathematical object and still remain sufficiently general.”

Fischer [Fis65] gives a definition of “simulation of one machine by an-
other.” where the following property holds. If machine M ′ simulates machine
M then for each computation in M defined by the sequence of configurations
c1, c2, c3 . . . there is a computation f(c′g(1)), . . . , f(c′g(2)), . . . , f(c′g(3)), . . . in

M ′ such that the computation of M ′ halts if and only if the computation
of M halts. Note ∀i, g(i) > g(i + 1). We are interested in the fact that
every configuration ci of the machine M being simulated is encoded by a
unique configuration c′g(i) in M ′. This requirement may exclude some sim-
ulations which may be considered reasonable. Take the example given by
Herman [Her68b] where more than one computation step of M is simu-
lated by a single computation step of M ′. If this is the case then there

2 Preliminaries 19

exists configurations in the computation of M that are not uniquely en-
coded in the computation of M ′. In her definition of universal Turing ma-
chine, Nozaki [Noz69] uses a notion of simulation that is similar to Fischer’s
and so has the same problem of excluding reasonable simulations from her
definition.

Herman accepted Fischer’s invitation to improve his definition. Her-
man’s definition is concerned only with the input-output relationship of the
simulated machine. If machine M ′ simulates machine M then M(c1) =
h(M ′(f(c1))) where f and h are the encoding and decoding functions re-
spectively. The definitions of universal Turing machine given by Davis and
Priese use this notion of simulation and so they avoid the problem of re-
stricting the simulation technique in the manner of Fischer and Nozaki.

We have seen that the problem of defining the term simulation is sim-
plified if we consider only the input-output relationship of the simulated
machine. However, it is useful in our analysis to consider the sequence of
computation steps taken by the simulator and the machine being simulated.
While the notion of simulation in Definition 2.1.7 is not concerned with
these steps we often talk about simulations in these terms. For instance
in the sequel we often speak of the simulator simulating a transition rule
of the machine being simulated. In our explanations we also use the terms
simulated tape head, simulated read symbol, simulated current state ,etc. of
the Turing machine being simulated. While in Definition 2.1.7 these objects
are not defined; they are always well-defined in any of the proofs we give.

Another idea that is useful in our analysis of simulators is that of simu-
lation technique. For instance model A is proved universal through simula-
tion of Turing machines and model B is proved universal through simulation
of model A. We say that model A simulates Turing machines directly and
model B simulates Turing machines via model A. In terms of Definition 2.1.7
the notions of “simulates directly” and “simulate via model A” are redun-
dant. However, we permit this abuse of the term “simulate” as we view
the “simulation technique” as being important in our analysis of universal
Turing machines.

2.3 Notational conventions

Throughout the thesis we adopt the following notational conventions. M de-
notes a deterministic Turing Machine with a single bi-infinite tape and a
single tape head [HU79]. We let t denote the running time of M . U denotes
a universal Turing machine and Um,n denotes some specific universal Turing
machine with m states and n symbols. The encoding of M as a word is
denoted 〈M〉. Analogously the encodings of state q and tape symbol σ are
denoted 〈q〉 and 〈σ〉, respectively. For convenience we often call the word
〈q〉 a state of 〈M〉.

2 Preliminaries 20

In the sequel we write c1 ⊢ c2 if a configuration c2 is obtained from
c1 via a single computation step. We let c1 ⊢

s c2 denote a sequence of s
computation steps and let c1 ⊢

∗ c2 denote 0 or more computation steps.
In regular expressions ∪, ∗, ǫ and parentheses have their usual mean-

ings [HU79]. Let Σ = {σ1, σ2, . . . , σn}, then Σ∗ is the set of all words
of length > 0 over the alphabet {σ1, σ2, . . . , σn}. The length of the word
w ∈ Σ∗ is denoted by |w|.

We use big-Oh notation in the analysis of time and space resource us-
age [Pap95]. Let f : N 7→ N and g : N 7→ N we write g(n) = O(f(n)) when
there exists b, n0 ∈ N such that for all n > n0, g(n) 6 bf(n).

2.4 Complexity analysis of previous simulations

We give some terminology that we use in our analysis of the time/space
complexity of simulators. Let M be any Turing machine and let t be the
running time of M . B is a polynomial time simulator of Turing machines if
(1) ∃k ∈ N such that ∀M : tB = O(tk) where tB is the running time of B
and (2) its encoding and decoding functions are logspace computable. We
say that B simulates M in polynomial time O(tk). The terms exponential
time simulator and linear time simulator may be defined analogously using
appropriate encoding and decoding functions. Definitions of time and space
simulation overheads are to be found in Boas [vEB90].

With the exception of Watanabe’s Turing machines, the results given in
this thesis give improvements on simulation times of all the simple models
given in this section.

We give a time/space complexity analysis of Cocke and Minsky’s [CM64]
simulation of a single tape deterministic Turing machine M by a 2-tag sys-
tem TM . The tape contents of M has a maximum length of O(t). This is
encoded as a 2-tag system dataword of length O(2t). Thus O(2t) space is
sufficient to simulate M . Each simulated timestep of M takes time O(2t).
Hence O(t2t) time is sufficient to simulate the computation of M .

The universal machines of Minsky and Rogozhin et al. [Min62a, Rog96,
KR02, Bai01] in Figure 1.1.1 simulate 2-tag systems with a quadratic poly-
nomial overhead in time. Hence O(t222t) time is sufficient to simulate the
computation of M .

Cyclic tag systems simulate 2-tag systems in linear time [Coo04, Wol02].
Hence O(t2t) time is sufficient for cyclic tag systems to simulate the com-
putation of M . Rule 110 simulates cyclic tag system in linear time [Coo04].
Hence O(t2t) time is sufficient for Rule 110 to simulate the computation of
M . The weakly universal Turing machines of Cook and Eppstein [Coo04],
and Wolfram [Wol02] in Figure 1.1.1 simulate Rule 110 with a quadratic
increase in time. Hence O(t222t) time is sufficient for these machines to
simulate the computation of M .

2 Preliminaries 21

The semi-weakly universal Turing machines of Woods and Neary [WN07b,
WNb] in Figure 1.1.1 simulate cyclic tag system with a quadratic polynomial
increase in time. Hence O(t222t) time is sufficient to simulate the computa-
tion of M , via the above simulations.

The semi-weakly universal Turing machines of Watanabe simulate Tur-
ing machines directly with a quadratic polynomial increase in time. Hence
O(t2) time is sufficient to simulate the computation of M .

The results we give in the thesis are for deterministic single tape Turing
machines. The multitape Turing machine model is more usually used in com-
plexity analysis. Some of our results also assume that the simulated machine
has a binary tape alphabet. The simulation times we give do not change
greatly when we consider deterministic multitape machines with larger al-
phabets. For example, let M ′ be a deterministic multitape Turing machine
with more than two symbols. M ′ is converted to a two symbol, single tape
Turing machine M . The number of states in M is only a constant times
greater than the number of states and symbols of M ′, also M is at worst
O(t2) polynomially slower than M ′ [Pap95].

3

Small O(t2) time universal Turing

machines

3.1 Introduction

In this chapter we present deterministic O(t2) polynomial time universal
Turing machines with state-symbol pairs of (3, 11), (5, 7), (6, 6), (7, 5) and
(8, 4). These are the smallest known machines that simulate Turing ma-
chines in O(t2) time. Each of the machines is plotted as a solid circle in
Figure 3.1.1. The O(t2) polynomial time curve that is induced by these
machines is also given in Figure 3.1.1.

Initially small universal Turing machines were constructed that directly
simulated Turing machines [Ike58, Wat61]. Subsequently, the technique of
indirect simulation via 2-tag systems was applied by Minsky [Min62a]. Due
to their unary encoding of Turing machine tape contents, 2-tag systems were
exponentially slow simulators of Turing machines [CM64]. Hence the small
universal Turing machines of Minsky, Rogozhin, Kudlek and Baiocchi all
suffered from a O(t222t) exponential time overhead [Min62a, Rog96, KR02,
Bai01]. In Chapter 5 we show that 2-tag systems simulate Turing machines
efficiently in polynomial time. From this result it follows that the univer-
sal Turing machines of Minsky and Rogozhin et al. simulate in O(t4 log2 t)
time. The smallest of these 2-tag simulators are plotted as hollow circles in
Figure 3.1.1. The O(t4 log2 t) time curve induced by these machines is also
plotted in Figure 3.1.1.

The small universal Turing machines presented in Chapter 6 are plotted
as solid triangles in Figure 3.1.1. These machines simulate Turing machines
via bi-tag systems in O(t6) time. Here we are particularly interested in the
comparison between our O(t2) machines and other standard small univer-
sal machines. Thus only standard machines (see Section 1.1.1) appear in
Figure 3.1.1.

Prior to the work in this chapter the smallest known polynomial time
universal Turing machine was constructed by Watanabe [Wat61] in 1961
and has 8 states and 5 symbols. Our machines are significantly smaller and
represent a new algorithm for small universal Turing machines. It should also
be noted that they are the smallest known machines where direct simulation

22

3 O(t2) time universal machines 23

b : universal, direct simulation, O(t2)

bc : universal, 2-tag simulation, O(t4 log2 t)

u : universal, bi-tag simulation, O(t6)

: universal O(t2) curve

: universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

b

b

b

b

bu

u

u

u

bc

bc

bc

bc

bc

bc

bc

Figure 3.1.1: State-symbol plot of small universal Turing machines. Each
new O(t2) machine is plotted as a solid circle.

of Turing machines is the technique used to establish their universality.
In Section 3.2 we give some definitions used to encode input to our

universal Turing machines and an overview of the simulation algorithm. In
Section 3.3 we give a 3-state, 11-symbol machine. We explain its input
encoding and computation in some detail. Section 3.4 contains a proof
of correctness which proves that this universal Turing machine simulates
Turing machines in O(t2) polynomial time. In Section 3.5 our algorithm is
extended to universal Turing machines with a number of other state-symbol
pairs and finally a conclusion is given.

The results we present in this chapter we previously given in [NW05b,
NW06c].

3.2 Preliminaries

At the beginning of this section we establish some formal conventions. We
then introduce some general encodings that each of our five machines adhere

3 O(t2) time universal machines 24

to. We also give an overview of our simulation algorithm. Each universal
Turing machine uses a variation on this algorithm. The Turing machines we
consider in this chapter have a single one-way infinite tape but otherwise
adhere to Definition 2.1.1.

3.2.1 Input encodings for universal Turing machines

Without loss of generality, any simulated Turing machine M has the fol-
lowing restrictions: (i) M ’s tape alphabet is Σ = {0, 1} and 0 is the blank
symbol, (ii) for all qi ∈ Q, i satisfies 1 6 i 6 |Q|, (iii) f is always defined, (iv)
M ’s start state is q1, (v) M has exactly one halt state q|Q| and its transition
rules are of the form (q|Q|, 0, 0, L, q|Q|) and (q|Q|, 1, 1, L, q|Q|). Point (v) is a
well-known halting technique that places the tape head at the beginning of
the output. The following definitions encode M .

Definition 3.2.1 (Encoding of M ’s tape symbols) The binary tape

symbols 0 and 1 of M are encoded as the words 〈0〉 =←−a←−a and 〈1〉 =
←−
b←−a .

Each of our five universal Turing machines has the symbols ←−a ,
←−
b and λ

as part of its tape alphabet. The symbols ←−a and
←−
b are typically used to

encode M ’s tape contents while λ is usually used as a marker symbol.

Definition 3.2.2 (Encoding of M ’s initial configuration) The encod-
ing of an initial configuration of M is of the form

〈M〉〈q1〉〈w〉
←−a ω

where 〈q1〉 is the start state of 〈M〉, 〈w〉 ∈ {←−a←−a ,
←−
b←−a }∗ is the encoding of

the input w to M that is given by Definition 3.2.1, ←−a ω = ←−a←−a←−a . . ., and
〈M〉 is the encoding of M :

〈M〉 = λP(f, q|Q|)λP(f, q|Q|−1)λ . . . λP(f, q2)λP(f, q1)λE (3.2.1)

where the function P is defined below in Equation (3.2.2), and the word

E ∈ {ǫ, e,←−a , λ
←−
b λ←−a ,

←−
b
←−
b
←−
b λ←−a } specifies the ending.

The initial position of U ’s tape head is at the leftmost symbol of 〈q1〉.

In the previous definition the encoding of M is placed to the left of its
encoded input. The initial position of M ’s simulated tape head is indicated
by the word 〈q1〉 and is immediately to the left of the leftmost encoded
input symbol. The remainder of the infinite tape of U contains the blank
symbol ←−a . The ending E varies over the five universal Turing machines
that we present.

The encoding of M ’s transition rules is defined using the function P that
specifies the relative positions of encoded transition rules for a given state qi.

P(f, qi) = E(ti,1)λE(ti,0)λE(ti,0)λE(ti,1)λE
′(f, ti,0) (3.2.2)

3 O(t2) time universal machines 25

In Equation 3.2.2 ti,1 and ti,0 denote the unique transition rules for the
state-symbol pairs (qi, 1) and (qi, 0), respectively. This notation is used for
transition rules throughout this chapter. The encoding functions E and E ′

map transition rules to words called ETRs (encoded transition rules). There
is a unique pair of E and E ′ functions for each of our five universal Turing
machines. Given what we have so far, we need only to give E , E ′ and 〈q1〉
to completely define the input to our universal Turing machines. These
functions are given before each universal Turing machine.

3.2.2 Universal Turing machine algorithm overview

In order to distinguish the current state qx of a simulated Turing machine M ,
the earliest small universal Turing machines [Ike58, Wat61] maintained a list
of all states with a marker at qx. A change in M ’s current state is simulated
by moving the marker to another location in the list of states. The most sig-
nificant difference between these earlier universal Turing machines and our
algorithm is that we store the encoded current state of M on M ’s simulated
tape at the location of M ’s tape head. Thus the encoded current state also
records the current location of M ’s tape head during the simulation. This
point is illustrated in Figure 3.2.3.

The problem of constructing a universal Turing machine can be divided
into the following basic steps. The universal Turing machine (1) reads the
encoded current state and (2) reads the encoded read symbol. Next the
universal Turing machine (3) prints the encoded write symbol, (4) moves
the simulated tape head and (5) establishes the new encoded current state.
Due to the location of the encoded current state and the encodings that we
use for our universal Turing machines, the sets {(1), (2)} and {(3), (4), (5)}
each become a single process. Steps (1) and (2) are combined such that a
single set of transition rules read both the encoded current state and the
encoded read symbol. Steps (3), (4) and (5) have been similarly combined.
Combining these steps has reduced the number of transition rules needed
by our universal Turing machines.

Here we give a brief description of the simulation algorithm. The en-
coded current state of M is positioned at the simulated tape head location
of M . Using a unary indexing method, our universal Turing machine U lo-
cates the next ETR (encoded transition rule) to execute (see Figure 3.2.1).

The next ETR is indexed (pointed to) by the number of
←−
b symbols con-

tained in the encoded current state and read symbol. If the number of
←−
b

symbols in the encoded current state and encoded read symbol is i then
the number of λ markers between the encoded current state and the next
ETR to be executed is i− 1. To locate the next ETR, U simply neutralises

the rightmost λ (i.e. replaces λ with some other symbol) for each
←−
b in the

encoded current state and read symbol, until there is only one
←−
b remaining.

3 O(t2) time universal machines 26

Encoding of Turing machine M -� Simulated tape of M� -

encoded
current state

encoded
read symbol

λ · · · λ ETR λ ETR λ ETR λ ETR λ ←−
b
←−
b
←−
b
←−
b ←−a

λ · · · λ ETR λ ETR λ ETR λ ETR λ ←−
b
←−
b
←−
b
←−
b ←−a

x� tape head of U

λ · · · λ ETR λ ETR λ ETR λ ETR λ
←−
b/
←−
b
←−
b
←−
b ←−a

x

λ · · · λ ETR λ ETR λ ETR λ ETR λ
←−
b/
←−
b
←−
b
←−
b ←−a

x

λ · · · λ ETR λ ETR λ ETR λ ETR λ/ ←−
b/
←−
b/
←−
b
←−
b ←−a

x

λ · · · λ ETR λ ETR λ ETR λ ETR λ/ ←−
b/
←−
b/
←−
b
←−
b ←−a

x

λ · · · λ ETR λ ETR λ ETR λ/ ETR λ/ ←−
b/
←−
b/
←−
b/
←−
b ←−a
x

λ · · · λ ETR λ ETR λ ETR λ/ ETR λ/ ←−
b/
←−
b/
←−
b/
←−
b ←−a

x

(a) λ · · · λ ETR λ ETRλ/ ETR λ/ ETR λ/ ←−
b/
←−
b/
←−
b/
←−
b/ ←−a

x
indexed ETR

Figure 3.2.1: Indexing of an encoded transition rule (ETR) during simula-
tion of a transition rule of M . The ETR to be executed is indexed by reading
the encoded current state and read symbol, and marking off λ symbols in
the encoding of M .

This indexed ETR is printed over the encoded current state and read sym-
bol (see Figure 3.2.2). This printing completes the execution of the ETR
and establishes the new encoded current state, encoded write symbol and
simulated tape head move. Figure 3.2.3(b) represents the tape contents of U
after an ETR of 〈M〉 is indexed. Figures 3.2.3(cR) and 3.2.3(cL) represent
the two possibilities for U ’s tape contents after an ETR is printed. To give
more details we present the algorithm as four cycles.

Cycle 1 (Index next ETR)

In this cycle U reads the encoded current state and encoded read symbol
and neutralises markers to index the next ETR (see Figure 3.2.1). Initially

U ’s tape head scans to the right until it reads a
←−
b . This

←−
b is replaced with

some other symbol. U ’s tape head then scans left to neutralise a λ marker.

This process is repeated until U reads the subword
←−
b←−a while scanning

3 O(t2) time universal machines 27

Encoding of Turing machine M -� Simulated tape of M� -

(a) λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b
←−
b λ/ ETR λ/ ETR λ/

←−
b/
←−
b/
←−
b/
←−
b/ ←−a

x

λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b
←−
b λ/ ETR λ/ ETR λ/

←−
b/
←−
b/
←−
b/
←−
b/ γ

x

λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/
←−
b/
←−
b/
←−
b/ γ

x

λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/
←−
b/
←−
b/ γ ←−b

x

λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/
←−
b/
←−
b/ γ ←−b

x

λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/
←−
b/ γ ←−b

←−
b

x

λ · · · λ ETR λ
←−
b←−a
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/
←−
b/ γ ←−b

←−
b

x

λ · · · λ ETR λ
←−
b←−a
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/ γ ←−

b
←−
b
←−
b

x

λ · · · λ ETR λ
←−
b
←−
a/
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/

←−
b/ γ ←−

b
←−
b
←−
b

x

λ · · · λ ETR λ
←−
b
←−
a/
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/ γ ←−a

←−
b
←−
b
←−
b

x

λ · · · λ ETR λ
←−
b/
←−
a/
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/ γ ←−a

←−
b
←−
b
←−
b

x

(b) λ · · · λ ETR λ
←−
b/
←−
a/
←−
b/
←−
b/
←−
b/ λ/ ETR λ/ ETR λ/ γ ←−

b ←−a
←−
b
←−
b
←−
b

x

(c) λ · · · λ ETR λ
←−
b←−a
←−
b
←−
b
←−
b λ ETR λ ETR λ

←−
b ←−a

←−
b
←−
b
←−
b

x encoded
current state

encoded
write symbol

Figure 3.2.2: Printing of an encoded transition rule (ETR) during simula-
tion of a transition rule of M . The ETR indexed in configuration (a) of
Figure 3.2.1 is printed over the previous encoded current state and read
symbol to complete the transition rule simulation.

right. This signals that the encoded current state and encoded read symbol
have been read. Cycle 1 is now complete and Cycle 2 begins.

Cycle 2 (Print ETR)

Cycle 2 copies an ETR to M ’s simulated tape head location (see Fig-
ure 3.2.2). U scans left and records the next symbol of the ETR to be
printed. U then scans right and prints the next symbol of the ETR at a
location specified by a marker. The location of this marker is initially set
at the end of Cycle 1 and its location is updated after the printing of each
symbol of the ETR. This process is repeated until the end of the ETR is

3 O(t2) time universal machines 28

(a)

(b)

(cR) (cL)

encoded current state encoded read symbol

encoded write symbol

Figure 3.2.3: Right and left moving transition rule simulations. The en-
coded current state marks the location of M ’s simulated tape head. (a)
Encoded configurations before beginning each transition rule simulation.
(b) Intermediate configurations immediately after the encoded read symbol
and encoded current state have been read. (cR) Configuration immediately
after the simulated right move. (cL) Configuration immediately after the
simulated left move.

detected causing U to enter Cycle 3. The end of the ETR is detected by U
encountering the marker or neutralised marker that separates ETRs.

Cycle 3 (Restore tape)

Cycle 3 restores M ’s encoded table of behaviour after an ETR has been
indexed and printed (see configurations (b) and (c) in Figure 3.2.2). U scans
right restoring 〈M〉 to its initial value. This Cycle ends when U encounters
the marker which was used in Cycle 2 to specify the position of the next
symbol of the ETR to be printed. U then enters Cycle 4.

Cycle 4 (Choose read or write symbol)

This cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U is immediately after simulating
a left move then this cycle reads the encoded read symbol to the left of the
encoded current state, (ii) if U is simulating a right move then this cycle
prints the encoded write symbol to the left of the encoded current state. On
completion of either case Cycle 1 is entered.

3.3 Construction of U3,11

Our first machine has 3 states and 11 symbols and is denoted U3,11. As
usual we let M be a Turing machine that is simulated by U3,11.

3 O(t2) time universal machines 29

Definition 3.3.1 (Encoding of start state of 〈M〉 for U3,11) The start

state of 〈M〉 is 〈q1〉 =←−a 5|Q|←−b 2.

Recall that 〈M〉 is the encoding of M and is defined via the functions E
and E ′. These encoding functions map to words over the alphabet of U3,11,
as defined in Equations (3.3.1) and (3.3.2). We denote the words defined by
E and E ′ with the acronyms ETR and ETR′, respectively.

Recall that ti,σ1 denotes the unique transition rule qi, σ1, σ2,D, qy in M
with initial state qi and read symbol σ1. Also, tR,i = (qx, σ1, σ2, R, qi) and
tL,i = (qx, σ1, σ2, L, qi); we write ∃tR,i to mean that there exists a transition
rule which moves right and has qi as its next state (there are zero or more
such transition rules).

Let t = (qx, σ1, σ2,D, qy) be a fixed transition rule in M , then t is en-
coded via Equation (3.2.2) using the function E on its own, or in conjunction
with E ′, where

E(t) =

ea(t)hb(t) if D = R,σ2 = 0

hea(t)hb(t) if D = R,σ2 = 1

ea(t)−1hb(t)eee if D = L, σ2 = 0

ea(t)−1hb(t)ehe if D = L, σ2 = 1

(3.3.1)

and

E ′(f, t) =

ea(tR,x)−3hb(tR,x)+2 if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1

e5|Q|−3h4 if qx = q1

(3.3.2)

where as before tR,x is any right moving transition rule such that tR,x ⊢ t,
the functions a(·) and b(·) are defined by Equations (3.3.3) and (3.3.4), e and
h are tape symbols, and ǫ is the empty word.

a(t) = 5|Q|+ 2− b(t) (3.3.3)

b(t) = 2 +

y
∑

j=1

g(t, j) (3.3.4)

where g(·) is given by

g(t, j) =

5 if j < y

3 if D = L, j = y

0 if D = R, j = y

(3.3.5)

Definition 3.3.2 (Encoding of M ’s current state for U3,11) The en-

coding of M ’s current state is of the form ←−a ∗
←−
b 2←−b ∗{←−a ∪ ǫ} and is of length

5|Q|+ 2.

3 O(t2) time universal machines 30

ETR transition rule tR,x for E ′ b(t) a(t) E ′ or E

E ′(f, t1,0) q1, 0, 1, R, q2 q1, 1, 0, R, q1 2 + 0 = 2 15 e12h4

E(t1,0) q1, 0, 1, R, q2 2 + 5 + 0 = 7 10 he10h7

E(t1,1) q1, 1, 0, R, q1 2 + 0 = 2 15 e15h2

E ′(f, t2,0) q2, 0, 0, L, q2 q1, 0, 1, R, q2 2 + 5 + 0 = 7 10 e7h9

E(t2,0) q2, 0, 0, L, q2 2 + 5 + 3 = 10 7 e6h10eee

E(t2,1) q2, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2 eh15ehe

E ′(f, t3,0) q3, 0, 0, L, q3 null null null ǫ

E(t3,0) q3, 0, 0, L, q3 2 + 5 + 5 + 3 = 15 2 eh15eee

E(t3,1) q3, 1, 1, L, q3 2 + 5 + 5 + 3 = 15 2 eh15ehe

Table 3.3.1: Values for the a(·) and b(·) functions, and for each ETR of 〈M1〉
in Example 3.3.1 .

The value of the ending E, from Equation (3.2.1), for U3,11 is E = e.

Example 3.3.1 (Encoding of M1 for U3,11) Let Turing machine M1 =
({q1, q2, q3}, {0, 1}, 0, f, q1 , {q3}) where f = {(q1, 0, 1, R, q2), (q1, 1, 0, R, q1),
(q2, 0, 0, L, q2), (q2, 1, 1, L, q3), (q3, 0, 0, L, q3), (q3, 1, 1, L, q3)}. Using Equa-
tion (3.2.1), M1 is encoded as:

〈M1〉 = λP(f, q3)λP(f, q2)λP(f, q1)λe

From Definition 3.3.1 the start state of 〈M1〉 is ←−a 15←−b 2. Substituting the
appropriate values from Equation (3.2.2) gives

〈M1〉 =λE(t3,1)λE(t3,0)λE(t3,0)λE(t3,1)λE
′(f, t3,0)

λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λe

Rewriting 〈M1〉 using Equations (3.3.1) and (3.3.2) and the values given in
Table 3.3.1 gives the word

〈M1〉 =λeh15eheλeh15eeeλeh15eeeλeh15eheλǫλeh15eheλe6h10eeeλ

e6h10eeeλeh15eheλe7h9λe15h2λhe10h7λhe10h7λe15h2λe12h4λe
(3.3.6)

To aid understanding, note that a key property of P from Equation (3.2.2)
is that it creates five ETRs in 〈M〉 for each state in M . Hence five ETRs
encode two transition rules. This apparent redundancy is due to the algo-
rithm used by our universal Turing machines. When executing an ETR, the
algorithm makes use of the direction of the previous tape head movement
of M . The leftmost ETR given by Equation (3.2.2) simulates execution of
transition rule ti,1 following a simulated left move. The second ETR from

3 O(t2) time universal machines 31

the left simulates execution of transition rule ti,0 following a simulated left
move. The rightmost ETR and the centre ETR are both used to simulate
execution of transition rule ti,0 following a simulated right move. Finally
the second ETR from the right simulates execution of transition rule ti,1
following a simulated right move.

In our simulation, the number of
←−
b symbols in the encoded current

state is used as a unary index to locate the next ETR to be executed. The
function b(·) defined by Equation (3.3.4) gives the number of h symbols in
an ETR. The number of h symbols in the ETR being executed defines the

number of
←−
b symbols in the next encoded current state 〈qy〉. The word

P(f, qy) gives the ETRs that encode the transition rules for state qy. Hence
the next ETR to be indexed is a subword of P(f, qy) and b(·) is a summation
dependant on all encoded states 〈qj〉 such that j 6 y. The function g defined
by Equation (3.3.5) is used by b(·) to calculate the number of ETRs in each
〈qj〉. The first case of g corresponds exactly to the number of ETRs given in
P (Equation (3.2.2)). The final two cases of g define whether the encoded
current state points to the rightmost ETR (g = 0) in the list of ETRs for a
state, or to the fourth from the right (g = 3).

It is important to note that the input and output encodings for our
universal Turing machines are efficiently (logspace) computable. This is an
important requirement for universal Turing machines that simulate Turing
machines in polynomial time. Recall that a logspace transducer [Sip97] is a
Turing machine that has a read-only input tape, a work tape, and a write-
only output tape, where only the space used by the work tape is considered.
Definition 3.2.2 gives the encoding of an initial configuration of M . The
transducer that computes this input encoding to U3,11 takes M and w as
input, where M is explicitly given as a word in some straightforward manner.

Lemma 3.3.1 Given Turing machine M as a word, and its input w, then
there exists a logspace transducer that computes the input 〈M〉〈q1〉〈w〉 to
U3,11.

Proof. The input to U3,11 is given by Definition 3.2.2. Space of O(log |M |) is
sufficient to compute 〈M〉 and 〈q1〉 via Equations (3.2.1) to (3.3.5). Constant
space is sufficient to compute 〈w〉 via Definition 3.2.1. �

We state the lemma for U3,11. However all five universal Turing machines
in this chapter have logspace computable input encodings. The decoding
of the output from U3,11, and our four other universal Turing machines, is
computed by a linear time, constant space transducer via Definition 3.2.1.

3 O(t2) time universal machines 32

3.3.1 U3,11 and its computation

Definition 3.3.3 (U3,11) Let Turing machine U3,11 = ({u1, u2, u3}, {
←−a ,
←−
b ,

e, h,−→e ,
−→
h ,←−e ,

←−
h , λ, δ, γ},←−a , f, u1, {u3}) where f is given by Table 3.3.2.

u1 u2 u3
←−a ←−e ,R, u1 γ, L, u2

←−a ,L, u3
←−
b ←−e ,R, u2

←−
b , L, u1 e,R, u1

e −→e , L, u1
←−e ,R, u1 e,R, u1

h
−→
h ,L, u1

←−
h ,R, u3

←−a ,L, u1
−→e ←−e ,R, u1 e,R, u2

←−e ,R, u3
−→
h
←−
h ,R, u1 h,R, u2

←−
h ,R, u3

←−e −→e , L, u1
−→e , L, u2 γ, L, u2

←−
h
−→
h ,L, u1

−→
h ,L, u2

←−a ,L, u3

λ δ,R, u1 λ,R, u2 δ,R, u3

δ λ, L, u1 λ,L, u2

γ ←−a ,L, u3
←−
h ,R, u3

←−
b , L, u3

Table 3.3.2: Table of behaviour for U3,11.

We give an example of U3,11 simulating a transition rule of M1 from
Example 3.3.1. This simulation is of the first step in M1’s computation
for a specific input. The example is presented as the 4 cycles given in
Section 3.2.2. In the below configurations the current state of U3,11 is high-
lighted in bold font, to the left of U3,11’s tape contents. M1’s encoded read
and write symbols are also highlighted in bold font. The position of U3,11’s
tape head is given by an underline. In the sequel we use the term overlined
region.

Definition 3.3.4 (Overlined region) The overlined region exactly spans
the encoded current state (has length 5|Q| + 2), except on completion of
reading an encoded read symbol (has length 5|Q|+ 4) until the next encoded
current state is established.

Example 3.3.2 (U3,11’s simulation of the right moving transition
rule t1,1 = (q1, 1, 0, R, q1) from Turing machine M1) The start state of
U3,11 is u1 and tape head of U3,11 is over the leftmost symbol of 〈q1〉 (as in
Definition 3.2.2). In this example M1’s input is 101 (encoded via 〈0〉 =←−a←−a

and 〈1〉 =
←−
b←−a). 〈M1〉 is in start state 〈q1〉 with encoded read symbol 〈1〉.

Thus the initial configuration of U is:

u1u1u1, (λEλEλEλEλE
′)3λe←−a←−a 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

3 O(t2) time universal machines 33

Cycle 1 (Index next ETR)

u1
←−a ←−e ,R, u1
←−
b ←−e ,R, u2
−→e ←−e ,R, u1
−→
h
←−
h ,R, u1

λ δ,R, u1

u2
←−a γ,L, u2
←−
b
←−
b , L, u1

u1

e −→e , L, u1

h
−→
h ,L, u1

←−e −→e , L, u1
←−
h
−→
h ,L, u1

λ δ,R, u1

δ λ, L, u1

Table 3.3.3: Sub-tables for Cycle 1 of U3,11.

In Cycle 1 the leftmost table (above) reads the encoded current state.
The rightmost table scans left and neutralises markers to index the next
ETR. The middle table decides when the cycle is complete. U3,11 scans the

encoded current state from left to right in state u1; each
←−
b is replaced with

an←−e and U3,11 then enters state u2 to see if it is finished reading the encoded
current state and encoded read symbol. U3,11 is simulating transition rule
t1,1 which is encoded by E(t1,1). Hence we have replaced the shorthand
notation E with the word e15h2 defined by E(t1,1). The word e15h2 appears
in the location defined by Equation (3.3.6). After the initial configuration
we have:

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−a 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−e 14

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λe←−e←−e 14←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

The leftmost
←−
b is replaced with an ←−e . U3,11 then moves right to test if it

is finished reading the encoded current state. If not, U3,11 reads another
←−
b ,

then scans left in state u1 and neutralises the rightmost λ marker:

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ−→e −→e 15−→e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

Having neutralised a λ marker, U3,11 scans right in state u1 searching for

the next
←−
b .

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′δ←−e←−e 15←−e

←−
b
←−
b←−a
←−
b←−a
←−
b←−a←−a←−a

←−
b←−a←−a ω

3 O(t2) time universal machines 34

The neutralisation process is repeated until the end of this cycle. Thus the

number of
←−
b symbols index the next ETR to be executed. U3,11 is finished

reading the encoded current state and read symbol when U3,11 reads a
←−
b

in state u1, moves right to test for the end of the encoded current state and
encoded read symbol, and reads an ←−a in state u2. In the configurations
below when all the e and h symbols in an E ′ or an E are replaced with ←−e

and
←−
h symbols the resulting word is denoted

←−
E ′ or

←−
E respectively. Similarly

when all the e and h symbols in an E ′ or an E are replaced with −→e and
−→
h

symbols the resulting word is denoted
−→
E ′ or

−→
E respectively.

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e

←−
b
←−
b
←−
b←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e←−e←−e←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2δ

←−
E ′δ←−e←−e 15←−e←−e←−e γ←−a←−a

←−
b←−a←−a ω (I)

In configuration (I) above U3,11 has entered Cycle 2. Also, the overlined
region is now extended to include the encoded read symbol as this has been
read and thus recorded in the same manner as the encoded current state.

Cycle 2 (Print ETR)

u2
←−a γ,L, u2

e ←−e ,R, u1

h
←−
h ,R, u3

←−e −→e , L, u2
←−
h
−→
h ,L, u2

λ λ,R, u2

δ λ, L, u2

u1
−→e ←−e ,R, u1
−→
h
←−
h ,R, u1

λ δ,R, u1

γ ←−a ,L, u3

u3
−→e ←−e ,R, u3
−→
h
←−
h ,R, u3

←−e γ, L, u2

λ δ,R, u3

γ
←−
b , L, u3

Table 3.3.4: Sub-tables for Cycle 2 of U3,11.

This cycle copies an ETR to 〈M〉’s tape head position. The leftmost
table scans left and records the next symbol of the ETR to be printed.
The two right tables scan right and print the appropriate symbol. In the
configurations below, U3,11 scans left until a h is read. Then U3,11 moves
right and records this h by entering u3.

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15hhδ

←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15hhλ

−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h λ
−→
E ′λ−→e −→e 17−→e γ←−a←−a

←−
b←−a←−a ω

3 O(t2) time universal machines 35

U3,11 now scans right until it reads a γ and prints the recorded symbol.

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e γ←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17←−e

←−
b←−a←−a

←−
b←−a←−a ω

u2u2u2,(λEλEλEλEλE
′)2(λE)3λe15h

←−
h δ
←−
E ′δ←−e←−e 17γ

←−
b←−a←−a

←−
b←−a←−a ω

This printing process is iterated until U3,11 is finished printing the ETR.
The completion of this process occurs on reading a λ in state u2.

u2u2u2, (λEλEλEλEλE
′)2(λE)3λ−→e 15−→h 2λ

−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)3λ−→e

15−→
h 2λ
−→
E ′λ−→e −→e γ←−a 15

←−
b 2←−a←−a

←−
b←−a←−a ω

Cycle 3 (Restore tape)

u2
−→e e,R, u2
−→
h h,R, u2

λ λ,R, u2

γ
←−
h ,R, u3

Table 3.3.5: Cycle 3 of U3,11.

This table restores M ’s simulated tape and encoded table of behaviour.
This cycle is entered from Cycle 2 (Print ETR). In Cycle 3, U3,11 moves

right restoring each −→e to e and each
−→
h to h. This continues until U3,11

reads γ, sending U3,11’s control to u3. Thus the configuration:

u2u2u2, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λeeγ←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

becomes:

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee

←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

Cycle 4 (Choose read or write symbol)

This cycle either (i) begins the indexing of an ETR or (ii) completes the
execution of an ETR. More precisely: (i) if U3,11 is immediately after sim-
ulating a left move then this cycle reads the encoded read symbol to the

3 O(t2) time universal machines 36

u1 u3
←−a ←−e ,R, u1

←−a ,L, u3
←−
b e,R, u1

e e,R, u1

h ←−a ,L, u1
←−
h ←−a ,L, u3

λ δ,R, u3

δ

Table 3.3.6: Cycle 4 of U3,11.

left of the encoded current state, (ii) if U3,11 is simulating a right move then
this cycle prints the encoded write symbol to the left of the encoded current
state. Case (ii) follows:

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee

←−
h←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−a←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)3λe15h2λE ′λee←−ee←−ee←−e←−a←−a 14

←−
b 2←−a←−a

←−
b←−a←−a ω (II)

In configuration (II) above we have shortened the overlined region; the two
symbols e←−e to the left of M1’s encoded current state encode the write
symbol 0.

The example simulation of transition rule t1,1 = (q1, 1, 0, R, q1) is now
complete. As U3,11 simulates M1 the encoded tape contents to the left of
the simulated tape head is encoded as e and h symbols (i.e. 〈0〉 = ee and

〈1〉 = he). The contents to the right is encoded as ←−a and
←−
b symbols (as in

Definition 3.2.1). This is not a problem as U3,11 simulates halting by moving
the simulated tape head to the left end of the tape. As a result the entire
encoded tape contents of the Turing machine are to the right of the tape

head and so are encoded by ←−a and
←−
b symbols.

In configuration (II) above the encoded write symbol 〈0〉 is written as
the word e←−e . This word will become ee after the next ETR has executed.
The new encoded current state satisfies Definition 3.3.2. M1’s simulated
tape head (the new encoded current state) is configured so that U3,11 reads
the next encoded read symbol to the right when searching for the next ETR.
The ←−a that signals the end of the encoded current state is provided by the
next encoded read symbol 〈0〉.

Remark 3.3.1 If the first read symbol of Example 3.3.2 is changed from

a 〈1〉 to a 〈0〉, then one less
←−
b is read when indexing the next ETR. This

3 O(t2) time universal machines 37

indexes the rightmost (rather than the second from the right) ETR.

3.4 Proof of correctness of U3,11

In this section we prove that U3,11 correctly simulates a number of the pos-
sible types of transition rules. We then extend these cases to all cases thus
proving the correctness of U3,11’s computation.

Lemma 3.4.1 Given a valid initial configuration of U3,11, the encoded
start state indexes the ETR defined by E(t1,1) if M ’s read symbol is 1 and
E ′(f, t1,0) if M ’s read symbol is 0.

Proof. The encoded start state contains exactly two
←−
b symbols. From

Example 3.3.2 when U3,11 reads a 〈1〉 in state 〈q1〉 it neutralises two λ mark-
ers thus locating the second ETR from the right. By Definition 3.2.2 and
Equation (3.2.2) this ETR is defined by E(t1,1). From Remark 3.3.1 and
Example 3.3.2 when U3,11 reads a 〈0〉 in state 〈q1〉 it neutralises one λ, thus
indexing the rightmost ETR defined by E ′(f, t1,0). �

Example 3.4.1 (U3,11’s simulation of the right moving transition
rule t1,0 = (q1, 0, 1, R, q2) from M1) In this example U3,11 is reading a
〈0〉 after a right move. The right move was given by the simulation of
t1,1 = (q1, 1, 0, R, q1) in Example 3.3.2. This unique case involves two steps,
executing an ETR′ and then an ETR. The execution of an ETR′ is repre-
sented by parts (a) and (b) of Figure 3.4.1 and the execution of the subse-
quent ETR is represented by parts (c) and (d) of Figure 3.4.1.

We take the last configuration of Example 3.3.2, with the encoded read
symbol 〈0〉 = ←−a←−a to the right of the encoded current state. Substituting
the appropriate ETR′ e12h4 from Equation (3.3.6) gives:

u1u1u1, (λEλEλEλEλE
′)2(λE)4λe12h4λee←−e←−a 15

←−
b
←−
b←−a←−a←−a←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)4λe12h4δ←−e←−e←−e←−e 15←−e←−e γ←−a←−a←−a

←−
b←−a←−a ω

In the configuration immediately above we have reached the end of Cycle 1
(Index next ETR). One λ has been replaced with one δ, thus indexing the

ETR′ e12h4. The
←−
b←−a that signaled the end of Cycle 1 was provided by the

rightmost
←−
b of the encoded current state and the leftmost←−a of the encoded

read symbol. Thus, only the leftmost ←−a of 〈0〉 = ←−a←−a←−a←−a←−a←−a was read and this

is sufficient to distinguish 〈0〉 from 〈1〉 =
←−
b←−a . However, the overlined

region does not cover the entire encoded read symbol which is why an ETR′

3 O(t2) time universal machines 38

(a)

(b)

(c)

(d)

encoded current stateencoded read symbol

encoded write symbol

Figure 3.4.1: Right move simulation (special case). The encoded current
state marks the location of M ’s simulated tape head. The configurations
given in (a), (b) and (c) represent the reading of the encoded current state
and an encoded 0 following a right move. (a) Encoded configuration before
beginning the transition rule simulation. (b) Intermediate configuration af-
ter the encoded current state and first symbol of the encoded read symbol
have been read. (c) Intermediate configuration immediately after the en-
coded read symbol has been read. (d) Configuration immediately after the
simulated right move.

executes before an ETR in this unique case. Skipping to the end of Cycle 2
(Print ETR) gives:

u2u2u2, (λEλEλEλEλE
′)2(λE)4λ−→e 12−→h 4λ−→e −→e −→e −→e γ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)4λe12h4λeeeeγ←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee

←−
h←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)4λe12h4λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

At this point U3,11 has executed the ETR′. U3,11 now executes the ETR that
represents the second step of the simulation of transition rule t1,0. This ETR
is defined by E(t1,0). Substituting the ETR he10h7 from Equation (3.3.6)
into the configuration immediately above gives:

u1u1u1, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeee←−a←−a←−a 11

←−
b 4←−a←−a←−a

←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e 18←−a←−a←−a

←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7δ

←−
E δ
←−
E ′δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (III)

3 O(t2) time universal machines 39

The ETR is indexed by neutralising three λ markers. The second part of the
〈0〉 is read during this process. We now skip to the end of Cycle 3 (Restore
tape) and illustrate a 〈1〉 being written to the left of the encoded current
state:

u2u2u2, (λEλEλEλEλE
′)2(λE)2λ

−→
h−→e 10−→h 7λ

−→
E λ
−→
E ′λ−→e −→e −→e γ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u2u2u2, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeeeγ

←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u3u3u3, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h
←−
b←−a 10

←−
b 7
←−
b←−a←−a ω

u1u1u1, (λEλEλEλEλE
′)2(λE)2λhe10h7λEλE ′λeee

←−
h e
←−
h e
←−
h e←−a

10←−
b 7
←−
b←−a←−a ω

In the configuration immediately above the write symbol is positioned to the
left of the new encoded current state. Recall that to the left of the simulated
tape head the symbol 1 is encoded as he. The

←−
h becomes h after execution

of the next ETR. The new encoded current state satisfies Definition 3.3.2
and the simulation of transition rule t1,0 = (q1, 0, 1, R, q2) is complete.

Lemma 3.4.2 Given a valid configuration of U3,11, the encoded current
state 〈qx〉 and encoded read symbol 〈σ1〉 index the ETR E(tx,σ1).

Proof. 〈M〉 is a list of ETRs, five ETRs for each state (pair of transition

rules) in M . The number of
←−
b symbols in the encoded current state 〈qx〉

and encoded read symbol, is used to index the next ETR to be executed. If

the number of
←−
b symbols is l then the l−1th ETR from the right is indexed.

In the encoding, the function b(·) determines the number of
←−
b symbols in

the next encoded current state. The function b(·) is defined as a summation
over g(·) in Equation (3.3.4) for j, where 1 6 j 6 x.

From Equation (3.3.5), for each j < x, the function g(·) always has value

5, hence there are at least 5(x−1) juxtaposed
←−
b symbols in 〈qx〉. The state

qx is encoded using five ETRs. When j = x, then g = 0 or g = 3; giving a

total number of
←−
b symbols that point to the 1st or 4th of these five ETRs

respectively.
Any encoded current state 〈qx〉, was established by execution of an ETR

r. The ETR r encodes move direction Dr and next state qx. The location of
the ETR that is indexed by 〈qx〉 is dependent on the move direction Dr of r.
When Dr = L and j = x then g(·) = 3; when this 3 is added to 5(x−1) this
indexes the 4th ETR (from the right) of the ETRs for qx. Using this value
of 5(x − 1) + 3 we get Cases A and B below. For clarity at this point note
that Dr is the move direction of the ETR r that established 〈qx〉 and 〈σ1〉
is the read symbol that is read with 〈qx〉 to index the next ETR E(tx,σ1).

Case A: (Dr = L, σ1 = 0). 〈0〉 = ←−a←−a adds no extra
←−
b symbols to the

number of
←−
b symbols provided by 〈qx〉, thus the number of

←−
b symbols is

given by g(·) alone and indexes the 4th ETR (from the right). By Equa-
tion (3.2.2) this is E(tx,0).

3 O(t2) time universal machines 40

Case B: (Dr = L, σ1 = 1). 〈1〉 =
←−
b←−a adds one extra

←−
b to the number of

←−
b symbols provided by 〈qx〉, thus indexing the 5th ETR (from the right).
By Equation (3.2.2) this is E(tx,1).

When Dr = R and j = x then g(·) = 0. Adding this 0 to 5(x − 1) we
get Cases C and D.

Case C: (Dr = R,σ1 = 1). 〈1〉 =
←−
b←−a adds one extra

←−
b to the number of

←−
b symbols provided by 〈qx〉, thus indexing the 2nd ETR (from right). By
Equation (3.2.2) this is E(tx,1).
Case D: (Dr = R,σ1 = 0). Case D is a unique case in which U3,11 simulates
a transition rule t with read symbol 0, immediately after a right moving
transition rule tR,x (i.e. tR,x ⊢ t). In such a case t is encoded as 2 ETRs

using E and E ′. The encoded read symbol 〈0〉 = ←−a←−a adds no extra
←−
b

symbols thus indexing the rightmost ETR, which is an ETR′. This ETR′

is given by the function E ′ and establishes an intermediate encoded current
state 〈qx〉

′ that indexes another ETR that in turn completes the simulation
of t. This other ETR is positioned 2 ETRs to the left of the ETR′. Hence in
Equation (3.3.2), tR,x is passed to b(·) as a parameter (instead of t) and E ′

adds 2 extra
←−
b symbols to index the ETR 2 places to the left of the ETR′.

By Equation (3.2.2) this is E(tx,0). �

Examples 3.3.2 and 3.4.1 give simulations of right moving transition
rules with the later case covering the special case of reading a 0 after a right
move. Example 3.4.2 gives the simulation of a left moving transition rule.

Example 3.4.2 (U3,11’s simulation of the left moving transition rule
t2,1 = (q2, 1, 1, L, q3) from M1) We take the last configuration of Exam-

ple 3.4.1, with 〈1〉 =
←−
b←−a to the right of the encoded current state. Substi-

tuting the appropriate ETR from Equation (3.3.6) gives:

u1u1u1, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee

←−
h e←−a

10←−
b 7
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

We now skip to the end of Cycle 1 (Index next ETR) giving:

u2u2u2, (λE)
4λE ′(λE)3λeh15eheδ

←−
E ′ (δ
←−
E)4δ

←−
E ′δ←−e←−e←−e

←−
h←−e←−e

18
γ←−a ω (IV)

Notice that the ETR is indexed by neutralising seven λ markers. Note also
that the 〈1〉 is read during this process. Next the ETR eh15ehe is printed
and we skip to the end of Cycle 2 (Print ETR):

u2u2u2, (λE)
4λE ′(λE)3λ−→e

−→
h 15−→e

−→
h−→e λ

−→
E ′(λ
−→
E)4λ

−→
E ′λ−→e −→e −→e

−→
h γ←−a

←−
b 15←−a

←−
b←−a←−a ω

Skipping to the end of Cycle 3 (Restore tape) gives:

u2u2u2, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehγ←−a

←−
b 15←−a

←−
b←−a
←−
b←−a
←−
b←−a←−a ω (V)

3 O(t2) time universal machines 41

In configuration (V) above the correct write symbol (〈1〉 =
←−
b←−a) has been

placed to the right of the encoded current state. The new encoded current
state satisfies Definition 3.3.2 and the simulation of transition rule t2,1 =
(q2, 1, 1, L, q3) is complete.

Remark 3.4.1 We show how U3,11 reads an encoded read symbol following
a left move. In this case the encoded read symbol is to the left of the encoded
current state. Immediately after configuration (V) of Example 3.4.2 we
would get:

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeeh

←−
hh
←−
hh
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh

←−
h
←−
h
←−
h←−a
←−
b 15←−a

←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeeehhh←−a←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VI)

u1u1u1, (λE)
4λE ′(λE)3λeh15eheλE ′(λE)4λE ′λeee←−a←−a←−a

←−
b 15←−a

←−
b←−a←−a ω (VII)

In configuration (VII) above the overlined region is extended as the encoded
read symbol has been read. U3,11 has begun to index the next ETR and is
moving to the left to neutralise a λ. The rightmost symbol of the encoded
read symbol (which for left moves is always e) was previously overwritten

with a γ and this was eventually replaced with a
←−
h . Only the leftmost

symbol of the encoded read symbol must be recorded. If the read symbol
was a 〈0〉 = ee then U3,11’s tape head would have read an e instead of a h
in configuration (VI) above, sending U3,11’s tape head right instead of left.
This would result in one less λ being neutralised. This process records the
difference in the encoded read symbols ee and he.

Continuing from configuration (VII) immediately after the next ETR
has been indexed, we have the following configuration:

u2u2u2, λeh15ehe(δ
←−
E)3δ

←−
E ′ ((δ

←−
E)4δ

←−
E ′)2δ←−e←−e←−e←−e

18
γ
←−
b←−a←−a ω (VIII)

Lemma 3.4.3 Given a valid configuration with 〈q|Q|〉 as the encoded cur-
rent state then U3,11 halts.

Proof. Recall from Section 3.2.1 that for all M the transition rules for
the halt state q|Q| are left moving and have q|Q| as the next state. Thus
when 〈q|Q|〉 is the encoded current state U3,11 simulates repeated left moves.
These left moves continue until the left end of M ’s simulated tape is reached.
When the simulated tape head is attempting to move left at the left end of

3 O(t2) time universal machines 42

the simulated tape then immediately after Cycle 3 the following computation
occurs:

u2u2u2, (λEλEλEλEλE
′)∗λγ←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ
←−
h←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗λ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

u3u3u3, (λEλEλEλEλE
′)∗δ←−a←−a←−a ∗

←−
b 2
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

There is no transition rule for the state-symbol pair (u3, δ) in U3,11 so the
simulation halts. �

Lemma 3.4.4 Given a valid initial configuration of U3,11, then immedi-
ately after the first ETR of a computation is indexed, the overlined region
is of the form ←−e 5|Q|+3γ.

Proof. From Definition 3.3.1 the encoded start state 〈q1〉 in an initial

configuration is of the form←−a 5|Q|←−b 2. Example 3.3.2 gives the case of reading
a 〈1〉 in the encoded start state 〈q1〉. In this case 〈q1〉 and 〈1〉 have both

been read, that is the
←−
b and ←−a symbols of 〈q1〉 and 〈1〉 have been replaced

with ←−e symbols and the rightmost ←−a is replaced with a γ. This gives an
overlined region of ←−e 5|Q|+3γ.

The other case is reading a 〈0〉 in state 〈q1〉. By Definition 3.2.2 the 〈0〉
is located immediately to the right of 〈q1〉. When reading a 〈0〉 on the right
there are two steps; executing an ETR′ and then an ETR. From Lemma 3.4.1
we know that the ETR′ E ′(f, t1,0) is indexed. Example 3.4.1 executes an
ETR′ and indexes the subsequent ETR, while in encoded state 〈q1〉. At

this point the entire 〈0〉 has been read. Thus the
←−
b and ←−a symbols of 〈q1〉

and 〈0〉 have been replaced with←−e symbols and the rightmost←−a is replaced
with a γ. This gives an overlined region of ←−e 5|Q|+3γ. �

Lemma 3.4.5 U3,11 simulates any transition rule of any deterministic Tur-
ing machine M .

Proof. The proof is by induction on the form of the overlined region.
The base case is given by Lemma 3.4.4; after the first ETR is indexed then
the overlined region is ←−e 5|Q|+3γ.

We will show that immediately after any ETR is indexed, the overlined
region is ←−e 5|Q|+3γ.

3 O(t2) time universal machines 43

Assume that the overlined region is←−e 5|Q|+3γ immediately after indexing
an ETR ξ1 in the simulation of timestep i of M ’s computation. Let ξ2 be
the ETR that is executed immediately after ξ1. We now show that the
overlined region is←−e 5|Q|+3γ immediately after indexing ξ2 in the simulation
of timestep i + 1.

The four cases of ETRs are defined by Equation (3.3.1). In Exam-
ples 3.3.2, 3.4.1 and 3.4.2, three of these cases are shown to execute cor-
rectly on an overlined region of the form ←−e 5|Q|+3γ. We use Example 3.4.2
to verify the remaining case (left move, write 0) by substitution of the ETR
defined by Case 4 of Equation (3.3.1) with the ETR defined by Case 3 of
Equation (3.3.1). The examples generalise to arbitrary transition rules.

Case 1 of Equation (3.3.1): Examples 3.3.2 and 3.4.1 verify Case
1. In configuration (I) (in simulation of timestep i) the overlined region is
←−e 5|Q|+3γ and the ETR ξ1 that is indexed is defined by Case 1 of Equa-
tion (3.3.1). In configuration (III) (in simulation of timestep i + 1) the next
ETR ξ2 has been indexed and the overlined region is ←−e 5|Q|+3γ.

Case 2 of Equation (3.3.1): Examples 3.4.1 and 3.4.2 verify Case 2.
In configuration (III) (in simulation of timestep i) the overlined region is
←−e 5|Q|+3γ and the ETR ξ1 that is indexed is defined by Case 2 of Equa-
tion (3.3.1). In configuration (IV) (in simulation of timestep i + 1) the next
ETR ξ2 has been indexed and the overlined region is ←−e 5|Q|+3γ.

Case 4 of Equation (3.3.1): Example 3.4.2 and configuration (VIII)
verify Case 4. In configuration (IV) (in simulation of timestep i) the over-
lined region is←−e 5|Q|+3γ and the ETR ξ1 that is indexed is defined by Case 4
of Equation (3.3.1). In configuration (VIII) (in simulation of timestep i+1)
the next ETR ξ2 has been indexed and the overlined region is ←−e 5|Q|+3γ.

Case 3 of Equation (3.3.1): Case 4 also verifies Case 3 by substitution
of the ETR defined by Case 4 of Equation (3.3.1) with the ETR defined by
Case 3.

We have shown that the overlined region is ←−e 5|Q|+3γ immediately after
any ETR is indexed. From Examples 3.3.2, 3.4.1 and 3.4.2, each ETR exe-
cutes on an overlined region of ←−e 5|Q|+3γ establishing the correct simulated
tape head location, encoded write symbol, and an encoded current state that
satisfies Definition 3.3.2. By Lemmata 3.4.1 and 3.4.2 the encoded current
state indexes the correct ETR. Due to the relative lengths of the encoded
current state and overlined region the above mentioned examples generalise
to any transition rule of any Turing machine M . �

3 O(t2) time universal machines 44

Theorem 3.4.1 Let M be a single tape deterministic Turing machine with
|Q| states that runs in time t. Then U3,11 simulates any Turing machine M
in space O(t + |Q|2) and time O(|Q|t2 + |Q|3t).

Proof. By Lemma 3.4.5 U3,11 simulates any transition rule. Thus given a
valid encoding of M ’s initial configuration (Definition 3.2.2), U3,11 simulates
the sequence of transition rules in M ’s computation. From Lemma 3.4.3
when U3,11 simulates the halting state of M , U3,11’s tape head returns to
the left end of M ’s encoded output and halts. The encoded output is easily
decoded via Definition 3.2.1.

(Space). At time t the space used by M is bounded by t. Simulator U3,11

uses space O(t + |Q|2), where O(|Q|2) space is used to store M as the word
〈M〉 and O(t) space is used to store M ’s encoded tape after t simulated
steps.

(Time). Simulating a transition rule involves 4 cycles. (1) Index an ETR
by neutralising O(|Q|) of the λ markers: O(|Q|t + |Q|3) steps. (2) Copy
an ETR of length O(|Q|) from 〈M〉 to the encoded current state location:
O(|Q|t+ |Q|3) steps. (3) Restore U3,11’s tape contents: O(t+ |Q|2) steps. (4)
Complete execution of ETR: a small constant number of steps. Thus U3,11

uses O(|Q|t+ |Q|3) time to simulate a single step of M , and O(|Q|t2 + |Q|3t)
time to simulate the entire computation of M . �

3.5 Polynomial time Curve

In this section we further extend our result by finding small polynomial time
universal Turing machines with other state-symbol pairs. Thus we establish
a O(t2) polynomial time curve.

All universal Turing machines in this chapter use the same basic algo-
rithm as U3,11. The proof of correctness given for U3,11 can be applied to
the remaining machines in a straightforward way, so we do not restate it.
The encoding of the input and operation of these universal Turing machines
is the same as U3,11 unless noted otherwise. Each universal Turing machine
makes use of specially tailored E and E ′ functions.

3.5.1 Construction of U6,6

For U6,6 the start state of 〈M〉 is encoded as 〈q1〉 =
←−a 5|Q|←−b 2. The encoding

of the current state is of the form←−a ∗
←−
b 2←−b ∗{←−a ∪ǫ} and is of length 5|Q|+2.

Let t = (qx, σ1, σ2,D, qy) be a fixed transition rule in M , then t is
encoded via P using the function E on its own, or in conjunction with E ′,

3 O(t2) time universal machines 45

where

E(t) =

←−
b b(t)←−a a(t)−3←−b if D = R,σ2 = 0
←−
b b(t)←−a a(t)+1 if D = R,σ2 = 1
←−a←−a←−a

←−
b b(t)←−a a(t)−2←−b if D = L, σ2 = 0

←−a
←−
b←−a
←−
b b(t)←−a a(t)−2←−b if D = L, σ2 = 1

(3.5.1)

and

E ′(f, t) =

←−
b b(tR,x)+2←−a a(tR,x)−5←−b if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 4←−a 5|Q|−5←−b if qx = q1

(3.5.2)

where as before tR,x is any right moving transition rule such that tR,x ⊢ t.

The value of the ending E, from Equation (3.2.1), for U6,6 is E =←−a .

Example 3.5.1 (Encoding of Turing machine M2 for U6,6) Let Tur-
ing machine M2 = ({q1, q2}, {0, 1}, 0, f, q1 , {q2}) where the function f is
defined by (q1, 0, 0, R, q1), (q1, 1, 1, R, q2), (q2, 0, 0, L, q2) and (q2, 1, 1, L, q2).
M2 is encoded as: 〈M2〉 = λP(f, q2)λP(f, q1)λE. Substituting the appro-
priate values from Equation (3.2.2) gives

〈M2〉 =λE(t2,1)λE(t2,0)λE(t2,0)λE(t2,1)λE
′(f, t2,0)

λE(t1,1)λE(t1,0)λE(t1,0)λE(t1,1)λE
′(f, t1,0)λE

Rewriting this using Equations (3.5.1) and (3.5.2) gives

〈M2〉 =λ←−a
←−
b←−a
←−
b 11λ←−a←−a←−a

←−
b 11λ←−a←−a←−a

←−
b 11λ←−a

←−
b←−a
←−
b 11

λ
←−
b 10λ

←−
b 7←−a 6λ

←−
b 2←−a 7←−b λ

←−
b 2←−a 7←−b λ

←−
b 7←−a 6λ

←−
b 4←−a 5←−b λ←−a

(3.5.3)

3 O(t2) time universal machines 46

Definition 3.5.1 (U6,6) Let Turing machine U6,6 = ({u1, u2, u3, u4, u5, u6},

{←−a ,
←−
b ,−→a ,

−→
b , λ, δ},←−a , f, u1, {u3, u5, u6}) where f is given by Table 3.5.7.

u1 u2 u3 u4 u5 u6
←−a ←−a ,R, u1 λ,L, u4

−→a ,L, u3
−→a ,L, u4

←−a ,L, u1
←−
b ←−a ,R, u2

←−
b , L, u3

−→
b , L, u3

−→
b , L, u4

←−a ,L, u3
−→a ←−a ,R, u1

←−a ,R, u2
←−a ,R, u5

−→a ,R, u2
←−a ,R, u6

−→
b
←−
b ,R, u1

←−
b ,R, u2

←−a ,L, u5
←−
b ,R, u5

−→
b ,R, u1

←−
b ,R, u6

λ
←−
b , L, u2

←−a ,L, u2 δ,R, u1 λ,R, u5
−→
b ,R, u5

δ δ,R, u1 δ,R, u2 δ, L, u3 δ, L, u4 λ,R, u6 λ,R, u6

Table 3.5.7: Table of behaviour for U6,6.

Remark 3.5.1 There are some minor differences between the operation
of U6,6 and U3,11. The order of symbols in ETRs of U6,6 is reversed when

compared with ETRs of U3,11, assuming ←−a = e and
←−
b = h. To see this,

note the difference between Equations (3.3.1) and (3.5.1). When printing
an ETR, U6,6 reverses the order so that encoded current states are of the
same form as those in U3,11. Also M ’s encoded tape symbols to the left and
right of the simulated tape head use the same encodings (〈0〉 = ←−a←−a and

〈1〉 =
←−
b←−a). This is not the case for U3,11.

We give an example of U6,6 simulating a transition rule of M2 from
Example 3.5.1. As usual the example is separated into 4 cycles.

Example 3.5.2 (U6,6’s simulation of the right moving transition
rule t1,1 = (q1, 1, 1, R, q2) from Turing machine M2) The start state of
U6,6 is u1 and the tape head of U6,6 is over the leftmost symbol of 〈q1〉 (as

in Definition 3.2.2). The input to M2 is 11 (encoded via 〈1〉 =
←−
b←−a). Thus

the initial configuration is:

u1u1u1, (λEλEλEλEλE
′)2λ←−a←−a

10←−
b 2
←−
b←−a
←−
b←−a←−a ω

Cycle 1 (Index next ETR)

In Cycle 1 the left table (see Table 3.5.8) reads the encoded current state.
The right table neutralises λ markers to index the next ETR. The neutrali-

sation is done in the usual way; each
←−
b in the encoded current state causes

a λ to be replaced with a δ. The middle table decides when the cycle is

complete. In state u1 the tape head scans from left to right; each
←−
b in the

encoded current state is replaced with an ←−a and U6,6 then enters state u3

via u2.

3 O(t2) time universal machines 47

u1
←−a ←−a ,R, u1
←−
b ←−a ,R, u2
−→a ←−a ,R, u1
−→
b
←−
b ,R, u1

δ δ,R, u1

u2
←−a λ,L, u4
←−
b
←−
b , L, u3

u3
←−a −→a ,L, u3
←−
b
−→
b , L, u3

λ δ,R, u1

δ δ, L, u3

Table 3.5.8: Sub-tables for Cycle 1 of U6,6.

We have replaced the shorthand notation E with the word
←−
b 7←−a 6 de-

fined by E(t1,1). The word
←−
b 7←−a 6 appears in the location defined by Equa-

tion (3.5.3). After the initial configuration we have:

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10

←−
b
←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u2u2u2, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a←−a 10←−a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u3u3u3, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ−→a −→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′δ−→a −→a 10−→a

←−
b
←−
b←−a
←−
b←−a
←−
b←−a
←−
b←−a←−a ω

The neutralisation process continues until U6,6 reads the final
←−
b , moves

right to test for the end of the encoded current state and read symbol in u2,
and then reads an←−a . When this occurs U6,6 is finished reading the encoded
current state and read symbol. Skipping to the end of this cycle gives:

u4u4u4, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6δE ′δ←−a←−a 10←−a←−a←−a λ

←−
b←−a←−a ω

U6,6 has neutralised two λ markers to index the next ETR.

u4
←−a −→a ,L, u4
←−
b
−→
b , L, u4

−→a ←−a ,R, u5
−→
b
←−
b ,R, u5

λ λ,R, u5

δ δ, L, u4

u5
−→a −→a ,R, u2
−→
b
−→
b ,R, u1

δ λ,R, u6

u1
−→a ←−a ,R, u1
−→
b
←−
b ,R, u1

λ
←−
b , L, u2

δ δ,R, u1

u2
←−a λ,L, u4
−→a ←−a ,R, u2
−→
b
←−
b ,R, u2

λ ←−a ,L, u2

δ δ,R, u2

Table 3.5.9: Sub-tables for Cycle 2 of U6,6.

3 O(t2) time universal machines 48

Cycle 2 (Print ETR)

This cycle copies an ETR to M ’s simulated tape head position. The leftmost
table scans left and locates the next symbol of the ETR to be printed. The
second table from the left records the symbol to be printed or ends the cycle.
The rightmost two tables scan right and print the appropriate symbol. In the
configurations below, U6,6 scans left until a λ is read. Then U6,6 moves right
and records the symbol read by entering state u1 or u2. In the configurations

below when all the
←−
b and ←−a symbols in an E ′ are replaced with

−→
b and −→a

symbols then the resulting word is denoted
−→
E ′ .

u4u4u4, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12−→a λ

←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

−→
b
←−
b
←−
b 5←−a 6δE ′δ←−a←−a 12←−a λ

←−
b←−a←−a ω

u2u2u2, (λE)
4λE ′(λE)3λ

−→
b
←−
b
←−
b 5←−a 6δE ′δ←−a←−a 12←−a

←−
b
←−
b←−a←−a ω

u4u4u4, (λE)
4λE ′(λE)3λ

−→
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b
−→
b
−→
b 5−→a 6δ

−→
E ′δ−→a −→a 12λ

←−
b
←−
b←−a←−a ω

On the first pass U6,6 located the symbol to be printed by using λ as a
marker. On subsequent passes U6,6 locates the symbol to be printed by

locating an −→a or
−→
b . This printing process is iterated until U6,6 is finished

printing the ETR. The completion of this process occurs on reading a δ in
state u5 which switches control to u6:

u4u4u4, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5−→a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5←−a δ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

u6u6u6, (λE)
4λE ′(λE)3λ

←−
b 7←−a 5←−a λ

−→
E ′δ−→a λ←−a 6

←−
b 7
←−
b←−a←−a ω

Cycle 3 (Restore tape)

This table restores M ’s simulated tape and encoded table of behaviour. U6,6

moves right restoring each −→a to ←−a , each
−→
b to

←−
b , and each δ to λ. This

continues until U6,6 reads λ, sending control to state u5.

u6u6u6, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a λ←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u5u5u5, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω

3 O(t2) time universal machines 49

u6
−→a ←−a ,R, u6
−→
b
←−
b ,R, u6

λ
−→
b ,R, u5

δ λ,R, u6

Table 3.5.10: Cycle 3 of U6,6.

Cycle 4 (Choose read or write symbol)

u5
←−a ←−a ,L, u1
←−
b ←−a ,L, u3

λ

u3
−→
b ←−a ,L, u5

u1
←−a ←−a ,R, u1
−→
b
←−
b ,R, u1

Table 3.5.11: Sub-tables for Cycle 4 of U6,6.

This cycle either (i) begins the indexing of an ETR or (ii) completes
the execution of an ETR. More precisely: (i) if U6,6 is immediately after
simulating a left move then this cycle reads the encoded read symbol to the
left of the encoded current state, (ii) if U6,6 is simulating a right move then
this cycle prints the encoded write symbol to the left of the encoded current
state. Case (ii) follows:

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

−→
b←−a←−a 5

←−
b 7
←−
b←−a←−a ω

u1u1u1, (λE)
4λE ′(λE)3λ

←−
b 7←−a 6λE ′λ←−a

←−
b
←−
b
←−
b←−a←−a←−a←−a 5

←−
b 7
←−
b←−a←−a ω

In the configuration immediately above we have shortened the overlined
section; the two symbols to the left of 〈M2〉’s encoded current state encode
the write symbol 1.

The example simulation of transition rule t1,1 = (q1, 1, 1, R, q2) is now

complete. The correct encoded write symbol 〈1〉 =
←−
b←−a has been written

and the new encoded current state is of the correct form. M2’s simulated
tape head (the new encoded current state) is configured so U6,6 reads the
next encoded read symbol to the right when searching for the next ETR.

Left moving transition rules are simulated in a similar fashion to the right
moving transition rule given above, except in this case the write symbol
is written on the right hand side of the encoded current state as shown in
Figure 3.2.3 (cL). After the left move M2’s simulated tape head (encoded
current state) is configured to read the encoded tape symbol to its left when
searching for the next ETR.

3 O(t2) time universal machines 50

The halting case for U6,6 is similar to the halting case for U3,11. When
U6,6 encounters the state symbol pair (u5, λ), for which there is no transition
rule, the computation halts. This occurs during Cycle 4 when U6,6 attempts
to simulate a left move at the left end of the simulated tape.

3.5.2 Construction of U5,7

For U5,7 the start state of 〈M〉 is encoded as 〈q1〉 =
←−a 5|Q|←−b 4. The encoding

of M ’s current state is of the form←−a ∗
←−
b 4←−b ∗{←−a ∪ǫ} and is of length 5|Q|+4.

Let t = (qx, σ1, σ2,D, qy) be a fixed transition rule in M , then t is
encoded via P using the function E on its own, or in conjunction with E ′,
where

E(t) =

←−
b b(t)+2←−a a(t)+1 if D = R,σ2 = 0
←−
b b(t)+2←−a a(t)←−b if D = R,σ2 = 1
←−a←−a←−a

←−
b b(t)+2←−a a(t)−1 if D = L, σ2 = 0

←−a
←−
b←−a
←−
b b(t)+2←−a a(t)−1 if D = L, σ2 = 1

(3.5.4)

and

E ′(f, t) =

←−
b b(tR,x)+4←−a a(tR,x)−2 if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 6←−a 5|Q|−2 if qx = q1

(3.5.5)

where as before tR,x is any right moving transition rule such that tR,x ⊢ t.

The value of the ending E, from Equation (3.2.1), for U5,7 is E = λ
←−
b λ←−a .

Definition 3.5.2 (U5,7) Let Turing machine U5,7 = ({u1, u2, u3, u4, u5},

{←−a ,
←−
b ,−→a ,

−→
b , λ,

←−
λ ,
−→
λ },←−a , f, u1, {u4, u5}) where f is given by the following

table.

u1 u2 u3 u4 u5
←−a ←−a ,R, u1 λ,L, u4

−→a ,L, u3
−→a ,L, u4

←−a ,L, u5
←−
b ←−a ,R, u2

←−
b , L, u3

−→
b , L, u3

−→
b , L, u4

←−a ,R, u1
−→a ←−a ,R, u1

←−a ,R, u2
−→a ,R, u1

←−a ,R, u3
←−a ,R, u5

−→
b
←−
b ,R, u1

←−
b ,R, u2

−→
b ,R, u2

←−
b ,R, u3

←−
b ,R, u5

λ ←−a ,L, u2
←−
b , L, u2

←−
λ ,R, u1 λ,R, u3

←−
λ ,L, u1

←−
λ
←−
b ,R, u5

←−a ,L, u3
−→
λ ,L, u3

−→
λ ,L, u4

−→
λ
←−
λ ,R, u1

←−
λ ,R, u2 λ,R, u5 λ,R, u5

Table 3.5.12: Table of behaviour for U5,7.

3 O(t2) time universal machines 51

Remark 3.5.2 There are some minor differences between the operation
of U5,7 and U3,11. The order of symbols in ETRs of U5,7 is reversed when

compared with ETRs of U3,11, assuming ←−a = e and
←−
b = h. To see this,

note the difference between Equations (3.3.1) and (3.5.4). When printing
an ETR, U5,7 reverses the order so that encoded current states are of the
same form as those in U3,11. Also M ’s encoded tape symbols to the left and
right of the simulated tape head use the same encodings (〈0〉 = ←−a←−a and

〈1〉 =
←−
b←−a). This is not the case for U3,11.

We give a brief overview of the computation of U5,7.

Cycle 1 (Index next ETR)

u1
←−a ←−a ,R, u1
←−
b ←−a ,R, u2
−→a ←−a ,R, u1
−→
b
←−
b ,R, u1

−→
λ
←−
λ ,R, u1

u2
←−a λ,L, u4
←−
b
←−
b , L, u3

u3
←−a −→a ,L, u3
←−
b
−→
b , L, u3

λ
←−
λ ,R, u1

←−
λ
−→
λ ,L, u3

Table 3.5.13: Sub-tables for Cycle 1 of U5,7.

In Cycle 1 the leftmost table (above) reads the encoded current state.

The rightmost table neutralises λ markers by replacing them with
←−
λ or

−→
λ

to index the next ETR. The middle table decides when the cycle is complete.

Each
←−
b in the encoded current state is replaced with←−a and then U5,7 enters

state u3 via u2.

Cycle 2 (Print ETR)

u4
←−a −→a ,L, u4
←−
b
−→
b , L, u4

−→a ←−a ,R, u3
−→
b
←−
b ,R, u3

λ λ,R, u3
←−
λ
−→
λ ,L, u4

u3
−→a −→a ,R, u1
−→
b
−→
b ,R, u2

−→
λ λ,R, u5

u2
←−a λ,L, u4
−→a ←−a ,R, u2
−→
b
←−
b ,R, u2

λ
←−
b , L, u2

−→
λ
←−
λ ,R, u2

u1
−→a ←−a ,R, u1
−→
b
←−
b ,R, u1

λ ←−a ,L, u2
−→
λ
←−
λ ,R, u1

Table 3.5.14: Sub-tables for Cycle 2 of U5,7.

3 O(t2) time universal machines 52

This cycle copies an ETR to M ’s simulated tape head position. The
leftmost table scans left and locates the next symbol of the ETR to be
printed. The second table from the left records the symbol to be printed or
ends the cycle. The rightmost two tables scan right and print the appropriate
symbol.

Cycle 3 (Restore tape)

u5
−→a ←−a ,R, u5
−→
b
←−
b ,R, u5

λ
←−
λ ,L, u1

−→
λ λ,R, u5

Table 3.5.15: Cycle 3 of U5,7.

Table 3.5.15 restores M ’s simulated tape and encoded table of be-

haviour. U5,7 moves right restoring each −→a to ←−a , each
−→
b to

←−
b , and each

−→
λ to λ. This continues until U5,7 reads λ, sending U5,7’s control into u1.

Cycle 4 (Choose read or write symbol)

u1
←−a ←−a ,R, u1
←−
b ←−a ,R, u2
←−
λ
←−
b ,R, u5

u2
←−
λ ←−a ,L, u3

u5
←−a ←−a ,L, u5
←−
b ←−a ,R, u1

Table 3.5.16: Sub-tables for Cycle 4 of U5,7.

This cycle either (i) begins the indexing of an ETR or (ii) completes
the execution of an ETR. More precisely: (i) if U5,7 is immediately after
simulating a left move then this cycle reads the encoded read symbol to the
left of the encoded current state, (ii) if U5,7 is simulating a right move then
this cycle prints the encoded write symbol to the left of the encoded current
state. The halting case for U5,7 is more complex than the previous universal

3 O(t2) time universal machines 53

Turing machines. If the simulated tape head is attempting to move left at
the left end of the simulated tape then at the end of Cycle 3 U5,7 has the
following configuration:

u5u5u5, (λEλEλEλEλE
′)∗λλ

←−
b λλ←−a←−a ∗

←−
b 4
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

The computation continues through 13 configurations before the halting
configuration given below is reached.

u5u5u5, (λEλEλEλEλE
′)∗λλ←−a

←−
b
←−
λ←−a←−a ∗

←−
b 4
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

There is no transition rule for the state-symbol pair (u5,
←−
λ) in U5,7 so the

simulation halts.

3.5.3 Construction of U7,5

For U7,5 the start state of 〈M〉 is encoded as 〈q1〉 = ←−a 5|Q|+1←−b 3. The

encoding of M ’s current state is of the form ←−a ∗
←−
b 3←−b ∗{←−a ∪ ǫ} and is of

length 5|Q|+ 4.
Let t = (qx, σ1, σ2,D, qy) be a fixed transition rule in M , then t is

encoded via P using the function E on its own, or in conjunction with E ′,
where

E(t) =

←−
b b(t)+1(←−a

←−
b)a(t)+1←−b if D = R,σ2 = 0

←−
b b(t)+1(←−a

←−
b)a(t)−1←−b

←−
b←−a
←−
b if D = R,σ2 = 1

(←−a
←−
b)3
←−
b b(t)+1(←−a

←−
b)a(t)−1←−b if D = L, σ2 = 0

←−a
←−
b
←−
b←−a
←−
b
←−
b b(t)+1(←−a

←−
b)a(t)−1←−b if D = L, σ2 = 1

(3.5.6)

and

E ′(f, t) =

←−
b b(tR,x)+3(←−a

←−
b)a(tR,x)−2←−b if ∃tR,x, qx 6= q1

ǫ if ∄tR,x, qx 6= q1
←−
b 5(←−a

←−
b)5|Q|−2←−b if qx = q1

(3.5.7)

where as before tR,x is any right moving transition rule such that tR,x ⊢ t.

The value of the ending E, from Equation (3.2.1), for U7,5 is E =
←−
b
←−
b
←−
b λ←−a .

Definition 3.5.3 (U7,5) Let Turing machine U7,5 = ({u1, u2, u3, u4, u5, u6,

u7}, {
←−a ,
←−
b , λ, δ, γ},←−a , f, u1, {u2, u5}) where the function f is given by Ta-

ble 3.5.17.

3 O(t2) time universal machines 54

u1 u2 u3 u4
←−a ←−a ,R, u1 γ, L, u4

←−a ,L, u3
←−a ,L, u4

←−
b ←−a ,R, u2

←−
b , L, u3 λ,L, u3 λ,L, u4

λ
←−
b ,R, u1 γ,R, u1 δ,R, u1 λ,R, u5

δ δ,R, u1 δ, L, u3 δ, L, u4

γ ←−a ,L, u2
←−
b ,R, u6

←−a ,R, u5
←−
b ,R, u5

u5 u6 u7
←−a ←−a ,R, u2

←−a ,R, u6
←−a ,R, u7

←−
b ←−a ,R, u3

←−a ,L, u7
←−a ,R, u1

λ γ,R, u6
←−
b ,R, u6

←−
b ,R, u7

δ λ,R, u7 δ,R, u6 λ,R, u7

γ
←−
b , L, u2 γ, L, u5

Table 3.5.17: Table of behaviour for U7,5.

Remark 3.5.3 There are some minor differences between the operation
of U7,5 and U3,11. The order of symbols in ETRs of U7,5 is reversed when

compared with ETRs of U3,11, assuming ←−a
←−
b = e and

←−
b = h. To see this,

note the difference between Equations (3.3.1) and (3.5.6). When printing
an ETR, U7,5 reverses the order so that encoded current states are of the
same form as those in U3,11. Also, M ’s encoded tape symbols to the left and
right of the simulated tape head use the same encodings (〈0〉 = ←−a←−a and

〈1〉 =
←−
b←−a). This is not the case for U3,11.

We give a brief overview of U7,5’s computation.

Cycle 1 (Index next ETR)

u1
←−a ←−a ,R, u1
←−
b ←−a ,R, u2

λ
←−
b ,R, u1

δ δ,R, u1

u2
←−a γ,L, u4
←−
b
←−
b , L, u3

u3
←−a ←−a ,L, u3
←−
b λ, L, u3

λ δ,R, u1

δ δ, L, u3

Table 3.5.18: Sub-tables for Cycle 1 of U7,5.

In Cycle 1 the left table (above) reads the encoded current state. The
right table neutralises λ markers by replacing them with δ symbols to index
the next ETR. The middle table decides when the cycle is complete. Each
←−
b in the encoded current state is replaced with←−a and U7,5 then enters state
u3 via u2.

3 O(t2) time universal machines 55

Cycle 2 (Print ETR)

u2 u4
←−a γ,L, u4

←−a ,L, u4
←−
b λ, L, u4

λ λ,R, u5

δ δ, L, u4

γ
←−
b ,R, u5

u5
←−a ←−a ,R, u2

λ γ,R, u6

δ λ,R, u7

u6
←−a ←−a ,R, u6

λ
←−
b ,R, u6

δ δ,R, u6

γ
←−
b , L, u2

u1 u2
←−a ←−a ,R, u1

λ
←−
b ,R, u1 γ,R, u1

δ δ,R, u1

γ ←−a ,L, u2

Table 3.5.19: Sub-tables for Cycle 2 of U7,5.

This cycle copies an ETR to M ’s simulated tape head position. The top
left table scans left and locates the next symbol of the ETR to be printed.
The top right table records the symbol to be printed or ends the cycle. The
bottom two tables scan right and print the appropriate symbol.

Cycle 3 (Restore tape)

This table restores M ’s simulated tape and encoded table of behaviour. U7,5

moves right restoring each λ to
←−
b , and each δ to λ. This continues until

U7,5 reads γ, sending U7,5’s control to u5.

u7
←−a ←−a ,R, u7

λ
←−
b ,R, u7

δ λ,R, u7

γ γ, L, u5

Table 3.5.20: Cycle 3 of U7,5.

3 O(t2) time universal machines 56

Cycle 4 (Choose read or write symbol)

u5
←−a ←−a ,R, u2
←−
b ←−a ,R, u3

u2 u3

γ
←−
b ,R, u6

←−a ,R, u5

u6
←−a ←−a ,R, u6
←−
b ←−a ,L, u7

u7
←−a ←−a ,R, u7
←−
b ←−a ,R, u1

Table 3.5.21: Sub-tables for Cycle 4 of U7,5.

This cycle either (i) begins the indexing of an ETR or (ii) completes
the execution of an ETR. More precisely: (i) if U7,5 is immediately after
simulating a left move then this cycle reads the encoded read symbol to the
left of the encoded current state, (ii) if U7,5 is simulating a right move then
this cycle prints the encoded write symbol to the left of the encoded current
state.

The halting case for U7,5 is more complex than the first two univer-
sal Turing machines in this chapter. When the simulated tape head is at-
tempting to move left at the left end of the simulated tape then the last
configuration of Cycle 3 for U7,5 has the following form:

u7u7u7, (λEλEλEλEλE
′)∗λ
←−
b
←−
b
←−
b λγ
←−
b←−a←−a ∗

←−
b 3
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

The computation continues through 42 configurations before the halting
configuration given below is reached.

u5u5u5, (λEλEλEλEλE
′)∗λ
←−
b
←−
b
←−
b γ
←−
b
←−
b
←−
b←−a ∗

←−
b 3
←−
b ∗←−a (

←−
b←−a ∪←−a←−a)∗←−a ω

There is no transition rule for the state-symbol pair (u5, γ) in U7,5 so the
simulation halts.

3.5.4 Construction of U8,4

For U8,4 the start state of 〈M〉 is encoded as 〈q1〉 =←−a 5|Q|←−b 2. The encoding

of M ’s current state is of the form←−a ∗
←−
b 2←−b ∗{←−a ∪ǫ} and is of length 5|Q|+2.

3 O(t2) time universal machines 57

Let t = (qx, σ1, σ2,D, qy) be a fixed transition rule in M , then t is
encoded via P using the function E on its own, or in conjunction with E ′,
where

E(t) =

←−
b
←−
b←−a (←−a

←−
b)a(t)←−b 2(b(t))←−a←−a if D = R,σ2 = 0

←−a←−a
←−
b
←−
b
←−
b (←−a

←−
b)a(t)−1←−b 2(b(t))←−a←−a if D = R,σ2 = 1

←−a (←−a
←−
b)a(t)−1←−b 2(b(t))(←−a

←−
b)3←−a←−a if D = L, σ2 = 0

←−a (←−a
←−
b)a(t)−1←−b 2(b(t))←−a

←−
b
←−
b
←−
b←−a
←−
b←−a←−a if D = L, σ2 = 1

(3.5.8)
and

E ′(f, t) =

←−
b
←−
b←−a (←−a

←−
b)a(tR,x)−3←−b 2(b(tR,x)+2)←−a←−a if ∃tR,x, qx 6= q1

←−a if ∄tR,x, qx 6= q1
←−
b
←−
b←−a (←−a

←−
b)5|Q|−3←−b 8←−a←−a if qx = q1

(3.5.9)
where as before tR,x is any right moving transition rule such that tR,x ⊢ t.

The value of the ending E, from Equation (3.2.1), for U8,4 is E = ǫ.

Definition 3.5.4 (U8,4) Let Turing machine U8,4 = ({u1, u2, u3, u4, u5, u6,

u7, u8}, {
←−a ,
←−
b , λ, δ},←−a , f, u1, {u2}) where f is given by the Table 3.5.22.

u1 u2 u3 u4
←−a ←−a ,R, u1 λ,L, u4

←−a ,L, u3
←−a ,L, u4

←−
b ←−a ,R, u2

←−
b , L, u3 δ, L, u3 δ, L, u5

λ
←−
b , L, u2 δ,R, u1 λ,R, u6

δ δ,R, u1 δ, L, u3 δ, L, u4

u5 u6 u7 u8
←−a ←−a ,R, u5

←−a ,R, u7
←−a ,R, u6

←−a ,R, u6
←−
b δ,R, u1

←−a ,L, u7
←−a ,R, u1

←−a ,L, u3

λ ←−a ,L, u2
←−
b ,R, u6

←−a ,R, u1
←−a ,L, u8

δ δ,R, u5
←−
b ,R, u8 λ,R, u6

←−
b ,R, u6

Table 3.5.22: Table of behaviour for U8,4.

We give a brief overview of U8,4’s computation. The tape contents are given

by the same symbols (〈1〉 =
←−
b←−a and 〈0〉 = ←−a←−a) to the left and right of

the simulated Turing machines tape head.

3 O(t2) time universal machines 58

Cycle 1 (Index next ETR)

u1
←−a ←−a ,R, u1
←−
b ←−a ,R, u2

δ δ,R, u1

u2
←−a λ,L, u4
←−
b
←−
b , L, u3

u3
←−a ←−a ,L, u3
←−
b δ, L, u3

λ δ,R, u1

δ δ, L, u3

Table 3.5.23: Sub-tables for Cycle 1 of U8,4.

In Cycle 1 the leftmost table (above) reads the encoded current state.
The rightmost table neutralises markers to index the next ETR. The middle
table decides when the cycle is complete. In state u1 the tape head scans

from left to right; each
←−
b in the encoded current state is replaced with ←−a

and U8,4 then enters state u3 via u2.

Cycle 2 (Print ETR)

u2 u4
←−a λ,L, u4

←−a ,L, u4
←−
b δ, L, u5

λ λ,R, u6

δ δ, L, u4

u5
←−a ←−a ,R, u5
←−
b δ,R, u1

λ ←−a ,L, u2

δ δ,R, u5

u1
←−a ←−a ,R, u1

λ
←−
b , L, u2

δ δ,R, u1

Table 3.5.24: Sub-tables for Cycle 2 of U8,4.

Before we explain this cycle we mention why ETRs for U8,4 are longer
than ETRs for the other universal Turing machines (e.g. compare Equa-
tions (3.5.8) and (3.3.1)). In U8,4’s ETRs there are multiple copies of the

subwords ←−a
←−
b and

←−
b
←−
b . During the Print ETR cycle, the subword ←−a

←−
b

will cause an ←−a to be printed and the subword
←−
b
←−
b will cause a

←−
b to be

printed. During this cycle the next symbol to be printed is the symbol to the

left of the rightmost
←−
b in the ETR. The rightmost

←−
b of the subwords←−a

←−
b

and
←−
b
←−
b is simply a marker and the symbol directly to its left is the symbol

that is to be printed. Extra ←−a symbols appear in U8,4’s ETRs that do not
result in symbols being printed during the print ETR cycle. These extra ←−a
symbols are added to allow the restore tape cycle to execute correctly.

This cycle copies an ETR to M ’s simulated tape head position. The
leftmost table scans left and locates the next symbol of the ETR to be

3 O(t2) time universal machines 59

printed or ends the cycle. The middle table records the symbol to be printed.
If an ←−a is to be printed the middle table also scans right and prints an ←−a .

If a
←−
b is to be printed the rightmost table scans right and prints a

←−
b .

Cycle 3 (Restore tape)

u6
←−a ←−a ,R, u7

λ
←−
b ,R, u6

δ
←−
b ,R, u8

u7
←−a ←−a ,R, u6

λ ←−a ,R, u1

δ λ,R, u6

u8
←−a ←−a ,R, u6

λ ←−a ,L, u8

δ
←−
b ,R, u6

Table 3.5.25: Sub-tables for Cycle 3 of U8,4.

These tables restore M ’s simulated tape and encoded table of behaviour.

U8,4’s tape head scans right restoring δ symbols to
←−
b and λ symbols. Recall

that during Cycle 1 (Index next ETR) λ symbols are replaced with δ symbols
in order to index the next ETR. Note also that during Cycle 1, as U8,4 scans

left, it also replaces each
←−
b with δ. As mentioned earlier there are extra

←−a symbols in each ETR that do not effect what is printed to the overlined
region. The reason for these extra ←−a symbols is to ensure that U8,4 can
distinguish which δ symbols to restore to λ symbols and which δ symbols

to restore to
←−
b symbols. The extra ←−a symbols ensure that U8,4 will be in

state u7 if δ should be restored to λ and in u6 or u8 if δ should be restored
to
←−
b . This cycle ends when U8,4 reads λ.

Cycle 4 (Choose read or write symbol)

u6
←−a ←−a ,R, u7
←−
b ←−a ,L, u7

u7
←−
b ←−a ,R, u1

u8
←−
b ←−a ,L, u3

Table 3.5.26: Sub-tables for Cycle 4 of U8,4.

This cycle either (i) begins the indexing of an ETR or (ii) completes
the execution of an ETR. More precisely: (i) if U8,4 is immediately after
simulating a left move then this cycle reads the encoded read symbol to the
left of the encoded current state, (ii) if U8,4 is simulating a right move then
this cycle prints the encoded write symbol to the left of the encoded current
state.

3 O(t2) time universal machines 60

Remark 3.5.4 Halting case U8,4. Recall that all our universal Turing
machines (in this chapter) simulate halting by attempting to simulate a
left move at the left end of the simulated tape. This is also true for U8,4.
However, the halting case for U8,4 differs slightly from the halting case for
U3,11. U3,11 halts during Cycle 4 (Choose read or write symbol). U8,4 halts
in the configuration immediately after printing the last symbol of the left
moving ETR at the end of Cycle 2 (Print ETR). When U8,4 prints the last
symbol of the ETR it enters state u2 and its tape head moves left. The tape
head is now over the tape cell which contains the leftmost symbol of 〈M〉.
The leftmost symbol of 〈M〉 is λ but during Cycle 2 this tape cell contains
a δ (a neutralised λ). There is no transition rule for the state-symbol pair
(u2, δ) in U8,4 so the simulation halts.

3.6 Conclusion and future work

We have improved the state of the art in small efficient universal Turing ma-
chines giving the smallest machines that simulate Turing machines in O(t2)
time. They are also the smallest known machines where direct simulation of
Turing machines is the technique used to establish their universality. The
most recent small universal Turing machines simulate Turing machines via
2-tag systems, in O(t4 log2 t) time [Bai01, KR02, Rog96, Rog98]. Before
the advent of Minsky’s universal Turing machine [Min62a], the smallest uni-
versal Turing machines used the technique of direct simulation of Turing
machines [Ike58, Wat61]. One problem in the construction of these univer-
sal Turing machines was the addressing of states, that is locating the next
encoded state during the simulation of a transition rule. Some approaches
to solving this problem are briefly discussed in Section 3.1 of Minsky’s pa-
per [Min62a]. A major advantage of our algorithm is the fact that the
encoded current state is located at the simulated tape head position. This
technique simplifies the addressing of states.

As future work it would be of interest to use our algorithm to construct
universal Turing machines with state-symbol pairs of (2, n) and (n, 2). This
would give a more complete polynomial O(t2) time curve. Also, our 6-state,
6-symbol universal Turing machine uses only 32 of 36 available transition
rules and so it seems possible that it could be improved to a 6-state, 5-symbol
machine or a 5-state, 6-symbol machine.

What about small universal Turing machines with less than polynomial
time complexity? For example, consider the construction of a linear time
universal Turing machine. Our universal Turing machines stores the en-
coded current state at the simulated tape head location. Suppose the entire
encoded table of behaviour is stored at this location. Simulating a transi-
tion rule merely involves scanning through the encoded table of behaviour,

3 O(t2) time universal machines 61

it is not necessary to scan the entire simulated tape contents. The idea is
straightforward, however we expect that a significant number of transition
rules would be required to move the entire encoded table of behaviour each
time a tape head movement is simulated. Trying to construct small linear
time universal Turing machines using this idea could be difficult, and we
leave this as an open problem.

4

The P-completeness of cellular

automaton Rule 110

4.1 Introduction

In this chapter we solve an open problem regarding the computational com-
plexity of Rule 110 which is one of the most intuitively simple cellular au-
tomata. We show that Rule 110 is efficiently universal and that its prediction
problem is P-complete. Rule 110 is a nearest neighbour, one-dimensional,
binary cellular automaton [Wol83]. It is composed of a sequence of cells
. . . p−1p0p1 . . . where each cell has a binary state pi ∈ {0, 1}. At timestep
s+1, the value pi,s+1 = F (pi−1,s, pi,s, pi+1,s) of the cell at position i is given
by the synchronous local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

The problem of Rule 110 prediction is defined as follows.

Definition 4.1.1 (Rule 110 prediction) Given an initial Rule 110 con-
figuration, a cell index i and a natural number t written in unary. Is cell pi

in state 1 at time t?

This problem is in P as a Turing machine simulates the cellular automaton in
O(t2) steps by repeatedly traversing from left to right. From Cook’s [Coo04]
result one infers a NC [GHR95] lower bound on the problem. Cook showed
that Rule 110 simulates Turing machines via the following sequence of sim-
ulations

Turing machine 7→ 2-tag system 7→ cyclic tag system 7→ Rule 110 (4.1.1)

where A 7→ B denotes that A is simulated by B. The universality of 2-tag
systems [CM64] is well-known. Cook supplied the latter two simulations (a
sketch of Cook’s proof is also to be found in Wolfram’s book [Wol02]). Each

62

4 P-completeness of Rule 110 63

of these simulations runs in polynomial time (that is, B runs in a number of
steps that is polynomial in the number of A’s steps) with the exception of
the exponentially slow 2-tag system simulation of Turing machines [CM64].
This slowdown is due to the 2-tag system’s unary encoding of Turing machine
tape contents. Thus from Equation (4.1.1), using the result in [CM64], Rule
110 is an exponentially slow simulator of Turing machines and so it has
remained open as to whether Rule 110 prediction is P-complete.

In this work we eliminate the 2-tag system to give the following chain of
simulations

Turing machine 7→ cyclic tag system 7→ Rule 110 (4.1.2)

Each simulation runs in polynomial time and the reduction from Turing
machine to Rule 110 is computable by a logspace Turing machine. Thus our
work shows that Rule 110 simulates Turing machines efficiently, giving the
following result.

Theorem 4.1.2 Rule 110 prediction is logspace complete for P.

Rule 110 is a very simple (2-state, nearest neighbour, one dimensional) cel-
lular automaton and Cook and Eppstein [Coo04], and Wolfram [Wol02] gave
four weakly universal Turing machines that simulate its computation. Their
size given as (number of states, number of symbols), are respectively (2, 5),
(3, 4), (4, 3) and (7, 2). Previously, these machines were exponentially slow
simulators of Turing machines. A corollary of our work is that these small
weakly universal machines are now polynomial time simulators of Turing
machines. The results we present in this chapter improves on the time over-
head of the version presented in [NW06a, NW06b].

The prediction problem for a number of classes of cellular automata has
been shown to be P-complete. However, Rule 110 is the simplest so far, in the
sense that previous P-completeness results have been shown for more general
cellular automata (e.g. more states, neighbours or dimensions). For exam-
ple, prediction of cellular automata of dimension d > 1 with an arbitrary
number of states is known to be P-complete [GHR95]. Ollinger’s [Oll02]
result shows that prediction for one-dimensional nearest neighbour cellular
automata is P-complete for six states. Richard’s [Ric06] result reduces this
to 4 states. Moore [Moo97a] shows that prediction of binary majority voting
cellular automata is P-complete for dimension d > 3. On the other hand, the
prediction problem for a variety of linear and quasilinear cellular automata
is in NC [Moo97b, Moo98]. The question of whether Rule 110 prediction

is P-complete has been asked, either directly or indirectly, in a number of
previous works (for example [Moo97b, Moo98, Aar02]).

An interesting decidability result has been given for the reachability
problem in binary cellular automata. The reachability problem is as fol-
lows: will a given cellular automata configuration evolve from another given

4 P-completeness of Rule 110 64

configuration? Codd [Cod68] has shown that the reachability problem is
decidable for 2-dimensional binary cellular automata with von Neumann
neighbourhood on a blank background. Sutner [Sut03] notes that the proof
of universality for Rule 110 depends on a periodic background and that
the reachability problem is decidable for Rule 110 on a blank background
following Codd’s result.

4.2 Cyclic tag systems

Cyclic tag systems were used by Cook [Coo04] to show that Rule 110 is
universal.

Definition 4.2.1 (cyclic tag system) A cyclic tag system C is a list of
binary words α0, . . . , αp−1 called appendants where αm ∈ {0, 1}

∗.

A configuration of a cyclic tag system consists of (i) a marker that points
to a single appendant αm in C, and (ii) a word w = w0 . . . w|w|−1 ∈ {0, 1}

∗.
We call w the dataword. Intuitively the list C is a program with the marker
pointing to instruction αm. In the initial configuration the marker points to
appendant α0 and w is the binary input word.

Definition 4.2.2 (computation step of a cyclic tag system) A com-
putation step is deterministic and acts on a configuration in one of two ways:

• If w0 = 0 then w0 is deleted and the marker moves to appendant
α(m+1 mod p).

• If w0 = 1 then w0 is deleted, the word αm is appended onto the right
end of w, and the marker moves to appendant α(m+1 mod p).

A cyclic tag system completes its computation if (i) the dataword is the
empty word or (ii) it enters a repeating sequence of configurations. The
complexity measures of time and space are defined in the obvious way.

Example 4.2.1 (cyclic tag system computation) Let C = 001, 01, 11 be a
cyclic tag system with input word 011. Below we give the first four steps
of the computation. In each configuration C is given on the left with the
marked appendant highlighted in bold font.

001001001, 01, 11 011 ⊢ 001,010101, 11 11 ⊢ 001, 01,111111 101

⊢ 001001001, 01, 11 0111 ⊢ 001,010101, 11 111 ⊢ . . .

4 P-completeness of Rule 110 65

4.3 Cyclic tag systems efficiently simulate Turing

machines

In an earlier version of this work [NW06a] the time efficiency of cyclic tag
systems is proved by replacing the 2-tag system in Equation (4.1.1) with a
clockwise Turing machine to give the following chain of simulations

Turing machine 7→ clockwise Turing machine

7→ cyclic tag system 7→ Rule 110
(4.3.1)

From the sequence of simulations in Equation (4.3.1) we get Theorem 4.3.1.

Theorem 4.3.1 ([NW06a]) Let M be a deterministic binary Turing ma-
chine with a single tape that computes in time t. Then there is a cyclic tag
system that simulates the computation of M in time O(t3 log t).

While Theorem 4.3.1 is not explicitly given in [NW06a] the result may
be obtained by a relatively straightforward analysis of Lemmata 1 and 2
in [NW06a]. This is similar to the analysis used in Chapter 5 to get the
time bound in Theorem 5.2.6.

In this work the clockwise Turing machine in Equation (4.3.1) is elim-
inated to give the chain of simulations in Equation (4.1.2). This gives us
the improved simulation time given in Theorem 4.3.2. Much of the proof of
Theorem 4.1.2 is given by Theorem 4.3.2.

In order to simplify this proof we state the result for Turing machines
that have a binary tape alphabet Σ = {a, b}. The proof runs for a number
of pages.

Theorem 4.3.2 Let M be a binary Turing machine with |Q| states that
runs in time t. Then there is a cyclic tag system CM that simulates the
computation of M in time O(|Q|t2 log t).

Proof. Let M = (Q, {a, b}, b, f, q1, q|Q|) where Q = {q1, . . . , q|Q|} are the
states, {a, b} is the binary alphabet, f is the transition function, b is the
blank symbol and q1, q|Q| ∈ Q are the initial and final states, respectively.
In the sequel σj ∈ {a, b}. The bulk of the proof is concerned with sim-
ulating a single (but arbitrary) left moving transition rule of M in time
O(|Q|t log t). The simulation of a right moving transition rule was given
previously in [NW06a] and is similar to a restriction of the method for sim-
ulating a left moving transition rule so we do not give it here.

Encoding

We define the cyclic tag system (program) to be of the following form
CM = α0, . . . , α2z−1 where z = 60|Q| + 121. Given a configuration of

4 P-completeness of Rule 110 66

M (consisting of current state qi ∈ Q, read symbol σj , and tape contents
wM = σ1 . . . σjσj+1 . . . σs−2 ∈ {a, b}∗) we encode this as a configuration of
CM as follows:

α0α0α0, . . . , α2z−1 〈1, qi,L〉〈σj+1〉 . . . 〈σs−2〉〈σb〉µ
s′〈σb〉〈σ1〉〈σ2〉 . . . 〈σj〉

(4.3.2)
Here the two infinite sequences of bank symbols on each side of the tape
contents are each encoded by 〈σb〉. The encoded current state is 〈1, qi,L〉
and the encoded read symbol 〈σj〉 is the rightmost encoded tape symbol.
Also, µ = 0710z−8 and

s′ = 2⌈log2 s⌉ (4.3.3)

are used for a ‘tape length’ counter. The values of appendants α0, . . . , α2z−1

are given during the proof below. States qi and tape symbols {a, b} of M ,
and 〈σb〉 are encoded as:

〈1, qi,L〉 = 060i+50102z−60i−51

〈a〉 = 0102z−2

〈b〉 = 02102z−3

〈σb〉 = 03102z−4

Our simulation algorithm consists of a number of stages. In a cyclic tag
system configuration the current stage x of our algorithm is identifiable by
the notation 〈x, qi,L〉.

How to read the tables

We define the cyclic tag system CM via a number of tables that specify
encoded objects (e.g. encoded symbols, states) in the dataword and the ap-
pendants they map to. Each table row gives an “encoded object” followed
by the “encoded object length”. The “initial marker index” gives the loca-
tion of the program marker immediately before the encoded object is read.
Each encoded object indexes an appendant αy, where y is specified by the
“index y of appendant” column and αy is specified by the “appendant αy”
column.

To aid the reader we carefully describe the initial steps in the simulation
of a transition rule. We encode a configuration that is arbitrary except for its
tape length (which is 2). Initially the marker is pointing at appendant α0 and
the dataword is 〈1, qi,L〉〈σ2〉〈σb〉µµµµ〈σb〉〈σ1〉 ∈ {0, 1}

14z . The leftmost 2z
symbols in the dataword encode the current state qi. From Table 4.3.1 this
is 〈1, qi,L〉 = 060i+50102z−60i−51. The computation begins by deleting the
60i + 50 leftmost 0 symbols while moving the marker rightwards through
the appendants, one step for each deletion. The leftmost data symbol is
now 1, this is deleted and causes the appendant α60i+50 to be appended
onto the rightmost end of the dataword. From Table 4.3.1 we see that this

4 P-completeness of Rule 110 67

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈1, qi,L〉 = 060i+50102z−60i−51 2z 0 60i + 50 〈 1′, qi,L〉

〈1, qi,L〉 = 060i+50102z−60i−51 2z z z + 60i + 50 0z〈1′, qi,L,s<s′〉

〈1, qi,L,s<s′〉 = 060i+55102z−60i−56 2z 0 60i + 55 〈1′, qi,L,s<s′〉

〈1, qi,L,s<s′〉 = 060i+55102z−60i−56 2z z z + 60i + 55 0z〈1′, qi,L,s<s′〉

〈a〉 = 0102z−2 2z 0 1 〈a〉

〈a〉 = 0102z−2 2z z z + 1 〈a〉

〈b〉 = 02102z−3 2z 0 2 〈b〉

〈b〉 = 02102z−3 2z z z + 2 〈b〉

〈σb〉 = 03102z−4 2z 0 3 〈σb〉

〈σb〉 = 03102z−4 2z z z + 3 〈σb〉

〈a/〉 = 04102z−5 2z 0 4 〈a/〉

〈a/〉 = 04102z−5 2z z z + 4 〈a/〉

〈b/〉 = 05102z−6 2z 0 5 〈b/〉

〈b/〉 = 05102z−6 2z z z + 5 〈b/〉

〈σb/ 〉 = 06102z−7 2z 0 6 〈σb/ 〉

〈σb/ 〉 = 06102z−7 2z z z + 6 〈σb/ 〉

µ = 0710z−8 z 0 7 µ/

µ = 0710z−8 z z z + 7 µ′

µ′ = 08102z−9 2z 0 8 µ′

µ′ = 08102z−9 2z z z + 8 µ′

µ/ = 09102z−10 2z 0 9 µ/

µ/ = 09102z−10 2z z z + 9 µ/

Table 4.3.1: (Stage 1. Halve counter). Every odd numbered µ = 0710z−8 is
marked off by being changed to µ/ = 09102z−10.

is α60i+50 = 〈1′, qi,L〉. Then 2z − 60i − 51 contiguous 0 symbols are deleted
while moving the marker one step for each deletion. Since |〈1, qi,L〉| = 2z and
there are exactly 2z appendants in CM , the marker is once again positioned
at α0. We write these 2z steps as

α0α0α0, . . . , α2z−1 〈1, qi,L〉〈σ2〉〈σb〉µµµµ〈σb〉〈σ1〉

⊢2z α0α0α0, . . . , α2z−1 〈σ2〉〈σb〉µµµµ〈σb〉〈σ1〉〈1
′, qi,L〉

4 P-completeness of Rule 110 68

cyclic tag system
program

sections of program
currently in use

〈1, qi,L〉〈σ〉〈σb〉µµµµ〈σb〉〈σj〉

〈2, qi,L〉〈σ〉〈σb〉µ/µµ/µ〈σb〉〈σj〉

〈1, qi,L〉〈σ/〉〈σb〉µ/µµ/µ〈σ/b〉〈σj〉

〈2, qi,L〉〈σ/〉〈σb〉µ/µ/µ/µ〈σ/b〉〈σj〉

〈1, qi,L〉〈σ/〉〈σ/b〉µ/µ/µ/µ〈σ/b〉〈σj〉

〈3, qi,L〉〈σ/〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σj〉

〈1, qk,L〉〈σp〉〈σ〉〈σb〉µµµµ〈σb〉

Figure 4.3.1: Cyclic tag system simulation of transition rule (qi, σj , σp, L, qk).
The cyclic tag system program is illustrated on the left. In the dataword
the encoded current state 〈x, qi,L〉 directs the control flow by determining
the sections of the cyclic tag system program that are used in algorithm
Stage x.

Algorithm overview

Our cyclic tag system algorithm has three stages. Stages 1 and 2 isolate the
encoded read symbol 〈σ1〉 of M which is located immediately to the left1

of the encoded current state 〈1, qi,L〉. These stages make use of the tape-
length counter specified by Equations (4.3.2) and (4.3.3). In Stage 1 every
odd numbered µ is marked and then in Stage 2 every even number 〈σ〉 is
marked. This process is iterated until all µ objects are marked (1 + log2 s′

iterations). The first six configurations of Figures 4.3.1 and 4.3.2 illustrate
this process. The encoded read symbol is now isolated as it is the only
unmarked encoded tape symbol. The computation then enters Stage 3 which
uses the encoded current state and (isolated) encoded read symbol to index
an appendant that encodes the write symbol and next state. Finally the
counter is doubled if necessary to maintain the equality in Equation (4.3.3).
The last two configurations of Figure 4.3.2 illustrate this process.

Stage 1. Halve counter

The counter value is specified by Equation (4.3.3) as the number of µ (or
later, µ′) objects. This value is halved by marking half of the µ objects
(changing µ to µ/) using Table 4.3.1. In this table we see that |µ| = z so ex-
actly two µ objects are read for a single traversal of the marker through all 2z
appendants. Every odd numbered µ indexes µ/ and every even numbered
µ indexes µ′. The encoded state 〈1, qi,L〉 indexes 〈1′, qi,L〉 or 〈1′, qi,L,s<s′〉,

1The manner in which a cyclic tag system reads its dataword is circular, hence the
rightmost object in a dataword can be considered to be immediately to the left of the left-
most object. To see this, note that 〈1, qi,L〉 is the leftmost object in the first configuration
and 〈1′, qi,L〉 is the rightmost object in the second configuration.

4 P-completeness of Rule 110 69

which sends control to Table 4.3.2.
We continue the above simulation (we later generalise to an arbitrary

number of tape symbols).

α0α0α0, . . . , α2z−1 〈σ2〉〈σb〉µµµµ〈σb〉〈σ1〉〈1
′, qi,L〉

⊢2z α0α0α0, . . . , α2z−1 〈σb〉µµµµ〈σb〉〈σ1〉〈1
′, qi,L〉〈σ2〉

⊢2z α0α0α0, . . . , α2z−1 µµµµ〈σb〉〈σ1〉〈1
′, qi,L〉〈σ2〉〈σb〉

⊢z α0, . . . ,αzαzαz, . . . , α2z−1 µµµ〈σb〉〈σ1〉〈1
′, qi,L〉〈σ2〉〈σb〉µ/

⊢z α0α0α0, . . . , α2z−1 µµ〈σb〉〈σ1〉〈1
′, qi,L〉〈σ2〉〈σb〉µ/µ

′

⊢6z α0α0α0, . . . , α2z−1 〈1′, qi,L〉〈σ2〉〈σb〉µ/µ
′µ/µ′〈σb〉〈σ1〉

The algorithm tests if the counter is 0 by checking if exactly one un-
marked µ was read. If so 〈3, qi,L〉 or 〈3, qi,L,s<s′〉 is appended and we enter
Stage 3. Otherwise 〈2, qi,L〉 or 〈2, qi,L,s<s′〉 is appended and we enter Stage 2.
Table 4.3.2 simulates this ‘if’ statement.

As we continue our simulation we note from Table 4.3.2 that the word
〈1′, qi,L〉 is of length 2z + 10. Hence the marker is at appendant α10 after
〈1′, qi,L〉 is read. The computation proceeds as follows:

α0α0α0, . . . , α2z−1 〈1′, qi,L〉〈σ2〉〈σb〉µ/µ
′µ/µ′〈σb〉〈σ1〉

⊢2z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈σ2〉〈σb〉µ/µ
′µ/µ′〈σb〉〈σ1〉〈2, qi,L〉

⊢16z α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi,L〉〈σ
′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉

Immediately above is the first configuration of Stage 2.

Stage 2. Mark half of the encoded tape symbols

There are three rather large tables for Stage 2. To simplify the proof for the
reader we give summary tables. If an encoded object points to an appendant
with it is own value no table entry is given.

The ultimate aim of this stage is to isolate the encoded read symbol.
Each iteration of this stage uses Table 4.3.5 to mark off every even numbered
encoded tape symbol 〈σ〉. We must ensure that the encoded read symbol
〈σ′1〉 immediately to the left of 〈2, qi,L〉 is at an odd numbered position so it
is not marked off during the execution of Table 4.3.5. Tables 4.3.3 and 4.3.4
test if the encoded read symbol is at an even numbered position and if so
the dummy symbol 〈σ′d〉 is appended to place the encoded read symbol at
an odd numbered position.

Note from Table 4.3.3 that encoded state 〈2, qi,L〉 or 〈2, qi,L,s<s′〉 is of
length 2z +10. Hence the marker is at appendant α20 after reading 〈2, qi,L〉.
When the initial marker index is moved to α20 this causes each encoded
object to index a copy of itself (e.g. µ′ indexes µ′). Thus the computation

4 P-completeness of Rule 110 70

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈1′, qi,L〉 = 060i+51102z−60i−42 2z + 10 0 60i + 51 〈2, qi,L〉

〈1′, qi,L〉 = 060i+51102z−60i−42 2z + 10 z z + 60i + 51 〈3, qi,L〉

〈1′, qi,L,s<s′〉 = 060i+56102z−60i−47 2z + 10 0 60i + 56 〈2, qi,L,s<s′〉

〈1′, qi,L,s<s′〉 = 060i+56102z−60i−47 2z + 10 z z + 60i + 56 〈3, qi,L,s<s′〉

〈a〉 = 0102z−2 2z 10 11 〈a′〉

〈a〉 = 0102z−2 2z z + 10 z + 11 〈a〉

〈b〉 = 02102z−3 2z 10 12 〈b′〉

〈b〉 = 02102z−3 2z z + 10 z + 12 〈b〉

〈σb〉 = 03102z−4 2z 10 13 〈σ′
b
〉

〈σb〉 = 03102z−4 2z z + 10 z + 13 〈σb〉

〈a/〉 = 04102z−5 2z 10 14 〈a/〉

〈a/〉 = 04102z−5 2z z + 10 z + 14 〈a/〉

〈b/〉 = 05102z−6 2z 10 15 〈b/〉

〈b/〉 = 05102z−6 2z z + 10 z + 15 〈b/〉

〈σb/ 〉 = 06102z−7 2z 10 16 〈σb/ 〉

〈σb/ 〉 = 06102z−7 2z z + 10 z + 16 〈σb/ 〉

µ′ = 08102z−9 2z 10 18 µ′

µ′ = 08102z−9 2z z + 10 z + 18 µ′

µ/ = 09102z−10 2z 10 19 µ/

µ/ = 09102z−10 2z z + 10 z + 19 µ/

Table 4.3.2: (Stage 1. Check counter value). Here 〈1′, qi,L〉 or 〈1′, qi,L,s<s′〉
is used to check if the counter is 0.

proceeds as follows.

α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi,L〉〈σ
′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉

⊢2z+10 α0, . . . ,α20α20α20, . . . , α2z−1 〈σ′2〉〈σ
′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈2

′, qi,L〉

⊢12z α0, . . . ,α20α20α20, . . . , α2z−1 〈2′, qi,L〉〈σ
′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉

Each encoded tape symbol 〈σ′〉 is of length z. If an odd number of 〈σ′〉
objects are read during execution of Table 4.3.3 then the initial marker will
be at 20 + z and rows 2 or 4 of Table 4.3.4 will execute. If an even number
of encoded tape symbols 〈σ′〉 are read then the initial marker will be at
20 and rows 1 or 3 of Table 4.3.4 will execute appending the dummy object
〈σ′d〉. In our simulation an even number of 〈σ′〉 symbols were read during the
execution of Table 4.3.3 hence the initial marker index is at appendant α20.
The encoded state 〈2′, qi,L〉 moves the initial marker index to appendant α30.
This causes each encoded object to index a copy of itself (e.g. µ′ indexes µ′).

4 P-completeness of Rule 110 71

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈2, qi,L〉 = 060i+42102z−60i−33 2z + 10 10 60i + 52 〈2′, qi,L〉

〈2, qi,L,s<s′〉 = 060i+47102z−60i−38 2z + 10 10 60i + 57 〈2′, qi,L,s<s′〉

Table 4.3.3: (Stage 2. Read σ′ symbols.) Each encoded object omitted from
this summary table indexes a copy of itself (e.g. µ′ indexes µ′).

Thus continuing our simulation gives:

α0, . . . ,α20α20α20, . . . , α2z−1 〈2′, qi,L〉〈σ
′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉

⊢2z+10 α0, . . . ,α30α30α30, . . . , α2z−1 〈σ′2〉〈σ
′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈σd〉〈2

′′, qi,L〉〈σ
′
d〉

⊢14z α0, . . . ,α30α30α30, . . . , α2z−1 〈2′′, qi,L〉〈σ
′
d〉〈σ

′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈σ

′
d〉

In a manner similar to that of Table 4.3.1, in which every odd numbered µ
was marked off, Table 4.3.5 marks off even numbered 〈σ′〉. To see this note
|〈a′〉| = |〈b′〉| = |〈σ′b〉| = |〈σ

′
d〉| = z. Thus every even numbered 〈σ′〉 indexes

〈σ/〉 and every odd numbered 〈σ′〉 indexes 〈σ〉. Continuing our simulation
gives:

α0, . . . ,α30α30α30, . . . , α2z−1 〈2′′, qi,L〉〈σ
′
d〉〈σ

′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈σ

′
d〉

⊢2z+10 α0, . . . ,α40α40α40, . . . , α2z−1 〈σ′d〉〈σ
′
2〉〈σ

′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈σ

′
d〉0

2z−40〈1, qi,L〉

⊢z α0, . . . ,αz+40αz+40αz+40, . . . , α2z−1 〈σ′2〉〈σ
′
b〉µ/µ

′µ/µ′〈σ′b〉〈σ
′
1〉〈σ

′
d〉0

2z−40〈1, qi,L〉

⊢z α0, . . . ,α40α40α40, . . . , α2z−1 〈σ′b〉µ/µ
′µ/µ′〈σ′b〉〈σ

′
1〉〈σ

′
d〉0

2z−40〈1, qi,L〉〈σ/2〉

⊢z α0, . . . ,αz+40αz+40αz+40, . . . , α2z−1 µ/µ′µ/µ′〈σ′b〉〈σ
′
1〉〈σ

′
d〉0

2z−40〈1, qi,L〉〈σ/2〉〈σb〉

⊢13z−40 α0α0α0, . . . , α2z−1 〈1, qi,L〉〈σ/2〉〈σb〉µ/µµ/µ〈σ/b〉〈σ1〉

The simulation continues as follows iterating Stages 1 and 2:

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈2′, qi,L〉 = 060i+33102z−60i−24 2z + 10 20 60i + 53 〈σd〉〈2
′′, qi,L〉〈σ

′
d
〉

〈2′, qi,L〉 = 060i+33102z−60i−24 2z + 10 z + 20 z + 60i + 53 〈2′′, qi,L〉

〈2′, qi,L,s<s′〉 = 060i+38102z−60i−29 2z + 10 20 60i + 58 〈σd〉〈2
′′, qi,L,s<s′〉〈σ

′
d
〉

〈2′, qi,L,s<s′〉 = 060i+38102z−60i−29 2z + 10 z + 20 z + 60i + 58 〈2′′, qi,L,s<s′〉

〈σd〉 = 013102z−14 2z 30 43 〈σ′
d
〉

Table 4.3.4: (Stage 2. Is the number of σ′ symbols odd or even.) Each
encoded object omitted from this summary table indexes a copy of itself
(e.g. µ′ indexes µ′).

4 P-completeness of Rule 110 72

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈2′′, qi,L〉 = 060i+24102z−60i−15 2z + 10 30 60i + 54 02z−40〈1, qi,L〉

〈2′′, qi,L,s<s′〉 = 060i+29102z−60i−20 2z + 10 30 60i + 59 02z−40〈1, qi,L,s<s′〉

µ′ = 08102z−9 2z 40 48 µ

µ′ = 08102z−9 2z z + 40 z + 48 µ

〈a′〉 = 01010z−11 z 40 50 〈a〉

〈a′〉 = 01010z−11 z z + 40 z + 50 〈a/〉

〈b′〉 = 01110z−12 z 40 51 〈b〉

〈b′〉 = 01110z−12 z z + 40 z + 51 〈b/〉

〈σ′
b
〉 = 01210z−13 z 40 52 〈σb〉

〈σ′
b
〉 = 01210z−13 z z + 40 z + 52 〈σb/ 〉

〈σ′
d
〉 = 01310z−14 z 40 53 ǫ

〈σ′
d
〉 = 01310z−14 z z + 40 z + 53 ǫ

Table 4.3.5: (Stage 2. Mark half of the encoded tape symbols). Each
encoded object omitted from this summary table indexes a copy of itself.

α0α0α0, . . . , α2z−1 〈1, qi,L〉〈σ/2〉〈σb〉µ/µµ/µ〈σ/b〉〈σ1〉

⊢34z+10 α0, . . . ,α10α10α10, . . . , α2z−1 〈2, qi,L〉〈σ/2〉〈σ
′
b〉µ/µ/µ/µ

′〈σ/b〉〈σ
′
1〉

⊢54z−10 α0α0α0, . . . , α2z−1 〈1, qi,L〉〈σ/2〉〈σ/b〉µ/µ/µ/µ〈σ/b〉〈σ1〉

⊢17z α0, . . . ,αzαzαz, . . . , α2z−1 〈1′, qi,L〉〈σ/2〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σ1〉

⊢2z+10 α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈σ/2〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σ1〉〈3, qi,L〉

⊢16z α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,L〉〈σ/2〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σ1〉

The configuration immediately above is the first configuration of Stage 3.

When must the counter value s′ be doubled?

If the simulated tape head is reading 〈σb〉 (the encoding of the infinite se-
quence of blank symbols to the left and right of the tape contents) then the
tape length is increasing. If this is the case, and s is a power of 2, then
we must double the counter value in order to satisfy Equation (4.3.3). Fig-
ure 4.3.2 illustrates this process. The doubling occurs in Stage 3. However,
the tape length test happens in Stage 1 using Table 4.3.1 as follows.

Suppose that s (the length of the tape is s− 2) is not a power of 2 and
thus s < s′. Then, on some iteration, Table 4.3.5 reads an odd number,
strictly greater than 1, of unmarked encoded tape symbols. If this occurs
then 〈1, qi,L〉 indexes the appendant 〈1′, qi,L,s<s′〉. To see this, notice that
in Stage 2, following execution of Table 4.3.2, the tape symbols a, b are

4 P-completeness of Rule 110 73

cyclic tag system
program

sections of program
currently in use

〈1, qi,L〉〈σ〉〈σ〉〈σb〉µµµµ〈σb〉

〈2, qi,L〉〈σ〉〈σ〉〈σb〉µ/µµ/µ〈σb〉

〈1, qi,L〉〈σ/〉〈σ〉〈σ/b〉µ/µµ/µ〈σb〉

〈2, qi,L〉〈σ/〉〈σ/〉〈σ/b〉µ/µ/µ/µ〈σb〉

〈1, qi,L〉〈σ/〉〈σ/〉〈σ/b〉µ/µ/µ/µ〈σb〉

〈3, qi,L〉〈σ/〉〈σ/〉〈σ/b〉µ/µ/µ/µ/〈σb〉

D〈σb〉〈1, qk,L〉〈σp〉〈σ〉〈σ〉〈σb〉µµµµ

〈1, qk,L〉〈σp〉〈σ〉〈σ〉〈σb〉µµµµµµµµ〈σb〉

Figure 4.3.2: Cyclic tag system simulation of transition rule (qi, σb, σp, L, qk).
The beginning of the simulation is the same as the simulation in Figure 4.3.1.
However this simulation differs as the tape length is increasing and so the
counter value (number of µ symbols) must be doubled to maintain the equal-
ity in Equation (4.3.3).

encoded as 〈a′〉, 〈b′〉 and the infinite sequence of blank symbols to the left
and right is encoded as 〈σ′b〉 where |〈σ′b〉| = |〈a

′〉| = |〈b′〉| = z. If CM reads an
odd number of these during execution of Table 4.3.5 then the initial marker
index is at z. Suppose otherwise that s is not a power of 2. Then 〈1, qi,L〉
will always index the appendant 〈1′, qi,L〉 during some iteration of Stage 1.
In summary, if 〈1′, qi,L,s<s′〉 is not appended before Stage 3 begins then the
number of 〈σ〉 objects in the dataword is a power of 2 and s = s′.

Stage 3. Complete simulation of transition rule

In this stage an appendant αy is indexed, based on the value of the encoded
current state and encoded read symbol using Table 4.3.6. The printing of
appendant αy simulates the encoded write symbol, encoded next state, and
the tape head movement.

Using Table 4.3.6 we read the encoded current state 〈3, qi,L〉 or 〈3, qi,L,s<s′〉
after which the initial marker index is 60i+ 60 or 60i+ 70 respectively. The
encoded read symbol was already isolated and uniquely retains its original
value of 〈a〉, 〈b〉 or 〈σb〉; this value points at the appendant αy (rows 3 to
6). All other (non-isolated) encoded tape symbols are of the form 〈a/〉, 〈b/〉
or 〈σ/b〉 and they point to the appendants 〈a〉, 〈b〉 or 〈σb〉 respectively.

The transitions rule (qi, σj , σp, L, qk) is encoded by each of the appen-
dants given in rows 3 to 6 of Table 4.3.6. The simulated tape head is not
reading 〈σb〉 and hence the appendant appended is of the form 〈1, qk,L〉〈σp〉.

4 P-completeness of Rule 110 74

encoded encoded initial index y of appendant

object object marker appendant αy

length index

〈3, qi,L〉 = 060i+4410z+5 z + 60i + 50 z + 10 z + 60i + 54 02z−60i−60

〈3, qi,L,s<s′〉 = 060i+4910z+10 z + 60i + 60 z + 10 z + 60i + 59 02z−60i−70

〈a〉 = 0102z−2 2z 60i + v 60i + v + 1 〈1, qk,L〉〈σp〉

〈b〉 = 02102z−3 2z 60i + v 60i + v + 2 〈1, qk,L〉〈σp〉

〈σb〉 = 03102z−4 2z 60i + 60 60i + 63 〈σb〉D〈1, qk,L〉〈σp〉

〈σb〉 = 03102z−4 2z 60i + 70 60i + 73 〈σb〉〈1, qk,L〉〈σp〉

〈a/〉 = 04102z−5 2z 60i + v 60i + v + 4 〈a〉

〈b/〉 = 05102z−6 2z 60i + v 60i + v + 5 〈b〉

〈σb/ 〉 = 06102z−7 2z 60i + v 60i + v + 6 〈σb〉

µ/ = 09102z−10 2z 60i + v 60i + v + 9 µ

Table 4.3.6: (Stage 3. Simulate transition rule (qi, σj , σp, L, qk)). This table
prints the encoded write symbol σp and establishes the new encoded cur-
rent state 〈1, qk,L〉. If the counter does not need to be doubled this table
completes simulation of the transition rule. Also, v ∈ {60, 70}.

Continuing the simulation we get:

α0, . . . ,αz+10αz+10αz+10, . . . , α2z−1 〈3, qi,L〉〈σ/2〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σ1〉

⊢z+60i+50 α0, . . . ,α60i+60α60i+60α60i+60, . . . , α2z−1 〈σ/2〉〈σ/b〉µ/µ/µ/µ/〈σ/b〉〈σ1〉0
2z−60i−60

⊢14z α0, . . . ,α60i+60α60i+60α60i+60, . . . , α2z−1 〈σ1〉0
2z−60i−60〈σ2〉〈σb〉µµµµ〈σb〉

⊢2z α0, . . . ,α60i+60α60i+60α60i+60, . . . , α2z−1 02z−60i−60〈σ2〉〈σb〉µµµµ〈σb〉〈1, qk,L〉〈σp〉

⊢12z−60i−60 α0α0α0, . . . , α2z−1 〈1, qk,L〉〈σp〉〈σ2〉〈σb〉µ/µ
′µ/µ′〈σb〉

The transition rule simulation is now complete. The appendant marker
of CM ’s program is at appendant α0. The encoded write symbol is written,
the new encoded state 〈1, qk,L〉 is established and the tape head movement is
simulated. Although the counter has already been halved this does not alter
the algorithm control flow during simulation of the next transition rule.

We have given a sequence of configurations that explicitly simulate the
application of a left moving transition rule of M . We used arbitrary initial
and next states qi, qk ∈ Q, and arbitrary tape symbols σj , σp ∈ {a, b}.

The transition rule simulation is specific in the sense that the length of
the tape data is fixed and the encoded read symbol is not of the form 〈σb〉. If
the simulated tape head is reading 〈σb〉 (it has moved beyond the edge of the
encoded tape contents) the tape length is increasing. If this is the case and
s is a power of 2, then we must double the counter value in order to satisfy
Equation (4.3.3). This means the appendant in row 5 of Table 4.3.6 will be
appended. The D in this appendant causes Table 4.3.7 to execute doubling

4 P-completeness of Rule 110 75

encoded encoded initial index y of appendant

object object marker appendant αy

length index

D = 069102z 2z + 70 0 69 02z−70

〈1, qk,L〉 = 060k+50102z−60k−51 2z 70 60k + 120 〈1, qk,L〉

〈a〉 = 0102z−2 2z 70 71 〈a〉

〈b〉 = 02102z−3 2z 70 72 〈b〉

〈σb〉 = 03102z−4 2z 70 73 〈σb〉

µ = 0710z−8 z 70 77 µµ

µ = 0710z−8 z z + 70 z + 77 µµ

µ′ = 08102z−9 2z 70 78 µ′µ′

µ/ = 09102z−10 2z 70 79 µ/µ/

Table 4.3.7: (Stage 3. Double counter). Each µ, µ′ and µ/ indexes the
appendants µµ, µ′µ′ and µ/µ/ respectively.

the counter’s value. Doubling the counter results in a single additional pass
of the dataword. This process is illustrated in the last two configurations of
Figure 4.3.2.

The computation of CM remains similar when s is not a power of 2. If s
is not a power of 2, and thus s < s′, then CM enters Stage 3 via 〈3, qi,L,s<s′〉
instead of 〈3, qi,L〉.

As mentioned earlier the case for a right moving transition rule is covered
in previous work [NW06a]. The execution of a right moving transition rule
is similar to the execution of a left moving transition rule with the exception
that we do not execute Tables 4.3.3 and 4.3.4.

We have shown how CM simulates an arbitrary transition rule of M . To
simulate halting CM enters a repeating sequence of configurations. The halt
state q|Q| is encoded in the normal way as 〈1, q|Q|,L〉 = 060|Q|+50102z−60|Q|−51.
We define the appendant at index 60|Q| + 50 to be 〈1, q|Q|,L〉. Therefore
〈1, q|Q|,L〉 indexes a copy of itself. Also after 〈1, q|Q|,L〉 is read, each encoded
tape symbol indexes a copy of itself. This causes CM to enter a repeating
sequence of configurations.

We have given a cyclic tag system CM which simulates Turing machine
M . The cyclic tag system algorithm, including the extra table entries that
are required to simulate right move transition rules, has been subject to
extensive computer testing. Note that simulating right moving transitions
rules requires no more time and space than simulating left moving transition
rules. Hence in giving the complexity analysis we can assume all transition
rules are left moving.

4 P-completeness of Rule 110 76

Space analysis

At time t there are O(t) encoded objects (state and symbols) in the dataword
of CM ; each of length O(|Q|). Thus CM uses O(|Q|t) space.

Time analysis

Simulating a transition rule involves 3 stages. Each stage executes in O(|Q|t)
steps. To simulate a single transition rule the counter is halved O(log t)
times, (i.e. Stages 1 and 2 are executed O(log t) times) and Stage 3 is
executed once. Thus O(|Q|t log t) time is sufficient to simulate a transition
rule and O(|Q|t2 log t) time is sufficient to simulate the computation of M .

This completes the proof of Theorem 4.3.2. �

A consequence of Theorem 4.3.2 is that Rule 110 simulates Turing ma-
chines in polynomial time. The weak machines in [Coo04, Wol02] simulate
Rule 110 in quadratic time, which in turn (using Cook’s construction with
the 2-tag systems in [CM64]) simulates Turing machines in exponential time.
We have improved this time bound to polynomial.

Corollary 4.3.3 The small weakly universal Turing machines in [Coo04]
simulate Turing machines in O(t4 log2 t) polynomial time.

4.4 P-completeness of Rule 110

Finally we show that the reduction from the generic machine simulation

problem (GMSP) [GHR95] to Rule 110 prediction is computable by
a logspace transducer Turing machine. The GMSP is stated as: given a
word wM , an encoding 〈M〉 of a single-tape Turing machine M , and an
integer t in unary, does M accept wM within t steps?

Lemma 4.4.1 The GMSP is logspace reducible to Rule 110 prediction.

Proof. We reduce the simulation problem for M to the analogous prob-
lem for cyclic tag systems. In the proof of Theorem 4.3.2 we showed how
to construct CM . We encode CM as a word 〈CM 〉. The value z used in
the proof of Theorem 4.3.2 is linear in |Q|, the number of states of M .
There are 2z appendants, each of length O(|Q|), giving an encoded pro-
gram length of O(|Q|2). From Equation (4.3.2) the input 〈wM 〉 to CM is of
length O(|Q||wM |). Thus the encoded appendants and input are logspace
constructable.

To show that a logspace transducer Turing machine generates a Rule
110 instance from 〈CM 〉#〈wM 〉#

t we examine Cook’s Rule 110 simulation
of cyclic tag systems [Coo04]. The input is written directly as the states of
O(|〈wM 〉|) contiguous cells beginning at, say, cell p0. On the left of the input

4 P-completeness of Rule 110 77

a constant word (representing Cook’s ‘ossifiers’) is repeated O(t) times. On
the right the cyclic tag system program (list of appendants and ‘leaders’) is
written O(t) times. �

Since we already know that Rule 110 prediction is in P, the proof of
Theorem 4.1.2 is complete.

4.5 Discusion

We have proved that the prediction problem of Rule 110, one of the simplest
cellular automata, is P-complete. In fact, we have established the stronger
result of improving the simulation time of Turing machines by Rule 110
from exponential [Coo04, Wol02] to quadratic time. What about improving
the simulation of Turing machines by Rule 110 to linear time? This result
could be achieved by giving a direct simulation of Turing machines using
Rule 110 or proving Rule 110 intrinsically universal [Oll02]. Another alter-
native would be to prove that cyclic tag systems simulate Turing machines
in linear time. This however may not be possible. The simulation tech-
niques of Turing machines using different variants of tag systems (bi-tag
systems, 2-tag systems and cyclic tag systems) involve reading the entire
input to simulate a single transition rule. Such a simulation technique im-
plies a polynomial time simulation. It may not be possible to significantly
improve on this technique.

The time efficiency of cyclic tag systems, established in this chapter,
has already found applications. We have shown that 2-tag systems simu-
late cyclic tag systems [WN06a] and thus the small universal Turing ma-
chines of Minsky and Rogozhin et al. are efficient polynomial time sim-
ulators of Turing machines. The semi-weakly universal Turing machines
in [WN07b, WNb] efficiently simulate cyclic tag systems, therefore these
semi-weak machines are efficiently universal.

5

Tag systems

5.1 Introduction

In this chapter we give results on tag systems. We present a new form of
tag system which we call bi-tag systems. Bi-tag systems were introduced to
allow for the construction of small universal Turing machines. Prior to this
all of the smallest universal Turing machines simulated Turing machines via
2-tag systems. A computation step of a bi-tag system is similar to that of a
2-tag system so many of the techniques used by small 2-tag simulators can be
adapted to give small bi-tag simulators. In fact some of the smallest known
universal Turing machines simulate bi-tag systems. We will encounter these
machines in Chapter 6. In Section 5.2 we prove that bi-tag systems simulate
Turing machine efficiently in polynomial time. This result has previously
appeared in [NW05a].

In this chapter we also prove that 2-tag systems efficiently simulate Tur-
ing machines. We give a proof outline that 2-tag systems simulate Turing
machines in polynomial time. As an immediate corollary of this result, we
find that the small universal Turing machines of Minsky and Rogozhin et
al. simulate Turing machines in polynomial time, an exponential improve-
ment.

In the early 1960s, Cocke and Minsky [CM64] showed that 2-tag sys-
tems simulate Turing machines, but in an exponentially slow fashion. Min-
sky [Min62a] constructed a small 7-state, 4-symbol universal Turing machine
that simulates 2-tag systems in polynomial time. Later, Rogozhin [Rog96]
and others [Bai01, KR02, Rob91] used Minsky’s simulation technique to find
small universal Turing machines for a number of different state-symbol pairs.
All of these small machines efficiently simulate 2-tag systems. However,
since Cocke and Minsky’s 2-tag simulation of Turing machines is exponen-
tially slow it has remained an open problem as to whether these universal
Turing machines can be made to run in polynomial time.

In Section 5.3 we give a brief outline of a proof that 2-tag systems effi-
ciently simulate cyclic tag systems in polynomial time. This leads us to our
second main result of this chapter, which is given by Theorem 5.1.1

78

5 Tag systems 79

b : universal, direct simulation, O(t2)

bc : universal, 2-tag simulation, O(t4 log2 t)

: O(t2) polynomial curve

: new O(t4 log2 t) polynomial curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols

b

b

b

b

b

bc

bc

bc

bc

bc

bc

bc

Figure 5.1.1: State-symbol plot of small universal Turing machines. The
plot shows the improvement in the polynomial time curve following Corol-
lary 5.1.2.

Theorem 5.1.1 Let M be a deterministic Turing machine with a single
tape that computes in time t, then there is a 2-tag system TM that simulates
the computation of M in time O(t2 log t).

This immediately gives the following interesting result.

Corollary 5.1.2 The small universal Turing machines of Minsky, Rogozhin
and others [Bai01, KR02, Rob91, Min62a, Rog96] are O(t4 log2 t) polynomial
time simulators of Turing machines.

Before our result it was entirely plausible that there was an exponential
trade-off between universal Turing machine program size complexity, and
time/space complexity; the smallest universal Turing machines seemed to
be exponentially slow. However, our result shows there is currently little
evidence for such a claim.

Early examples of time efficient small universal Turing machines were
found by Ikeno and Watanabe [Ike58, Wat61]. Prior to our result the small-

5 Tag systems 80

est known polynomial time universal Turing machines were given in [NW06c]
(also to be found in Chapter 3). However, these time efficient machines are
not as small as those of Rogozhin et al., hence our result represents a sig-
nificant size improvement when considering small polynomial time universal
Turing machines. This improvement is illustrated in Figure 5.1.1.

In Section 5.3 we prove that 2-tag systems simulate Turing machines in
O(t2 log t) polynomial time and give some applications of this result. The
result we present here improves on the time overhead of the version presented
in [WN06a, WN06b].

5.2 Bi-tag systems simulate Turing machines

5.2.1 Clockwise Turing machines simulate Turing machines

A clockwise Turing machine is a Turing machine that has a single tape,
which is circular, and whose tape head moves only in a clockwise direction.
The operation of clockwise Turing machines is quite similar to that of Kudlek
and Rogozhin’s [KR01b] Post machines.

Definition 5.2.1 (clockwise Turing machine [NW05a]) A clockwise
Turing machine is a tuple C = (Q,Σ, f, q1, q|Q|). Q and Σ are the finite
sets of states and tape symbols, respectively. q1 ∈ Q is the start state and
q|Q| ∈ Q is the halt state. The transition function f : Q×Σ→ {Σ∪ΣΣ}×Q
is undefined on state q|Q| and is defined for all q ∈ Q, where q 6= q|Q|.

We write f as a list of clockwise transition rules. Each clockwise transi-
tion rule is a quadruple t = (qx, σ1, v, qy), with initial state qx, read symbol
σ1, write value v ∈ {Σ ∪ ΣΣ} and next state qy. A clockwise transition
rule is executed as follows: If the write value v is from Σ then the tape cell
containing the read symbol is overwritten by v, if v is from ΣΣ then the
cell containing the read symbol becomes 2 cells each of which contain one
symbol from v. The machine’s state becomes qy and the tape head moves
clockwise by one tape cell. Clockwise Turing machines are deterministic.

Lemma 5.2.2 Let M be a deterministic Turing machine with a single tape
that computes in time t, then there is a clockwise Turing machine CM that
simulates the computation of M in time O(t2) and space O(t).

Proof. Let N be a Turing machine that has the following restrictions: (i)
the blank symbol σ1 does not appear as input to N , (ii) N may read the
blank symbol but is not permitted to write it to the tape, (iii) N has exactly
one final state. Due to the restrictions placed on N we know that when N
reads a blank symbol it is either at the left or right end of its tape con-
tents. We wish to simulate M = ({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, σ1, f, q1,H})
a Turing machine without these restrictions. M is converted to a restricted

5 Tag systems 81

(a)

. . . σ1 σ2 σ3 σ2 σ3 σ2 σ2 σ1
. . .

tape head

(b)

lr
σ2

σ3

σ2σ3

σ2

σ2

Figure 5.2.1: (a) Example Turing machine tape contents. The Turing ma-
chine’s blank symbol is σ1. (b) clockwise Turing machine encoding of the
Turing machine tape contents in (a), the symbols r and l encode the infi-
nite sequence of blank symbols to the right and left of M ’s encoded tape
contents, respectively.

Turing machine N that requires one extra state and one extra symbol,
and executes one extra computation step. We define Turing machine N =
({q1, . . . , q|Q|+1}, {σ1, . . . , σ|Σ|+1}, σ1, fN , q1, {q|Q|+1}). We construct a clock-
wise Turing machine CM = (QC ,ΣC , fC , q1, q|Q|+1) that simulates M via N ,
where QC ,ΣC , fC are defined below.

ΣC = {σ2, . . . , σ|Σ|+1, r, l, γ}

The symbol γ is a special marker symbol and symbols r and l encode the
infinite sequence of blank symbols to the right and left of N ’s encoded tape
contents respectively (see Figure 5.2.1).

QC ={q1, q1,2, . . . , q1,|Σ|+1, q1,r, q1,r′ , q1,l,

q2, q2,2, . . . , q2,|Σ|+1, q2,r, q2,r′ , q2,l,

...

q|Q|, q|Q|,2, . . . , q|Q|,|Σ|+1, q|Q|,r, q|Q|,r′, q|Q|,l, q|Q|+1}

We can think of right moves of N ’s tape head as clockwise moves. Here
we give right move transition rules followed by the clockwise transition rules
that simulate them.

qx, σk, σj , R, qy : qx, σk, σj, qy (5.2.1)

qx, σ1, σj , R, qy : qx, l, lσj , qy (5.2.2)

where σk, σj 6= σ1. The clockwise transition rule in Equation (5.2.2) sim-
ulates N printing the write symbol σj over the blank symbol immediately
to the left of its tape contents. The clockwise transition rule’s write value
lσj ∈ ΣΣ also preserves l; the symbol that encodes the infinite sequence of
blank symbols to the left of the tape contents.

The remaining right moving case is when N ’s tape head is over the blank
symbol immediately to the right of its tape contents. In such a case CM ’s

5 Tag systems 82

tape head is initially over r, and then immediately after simulation of the
transition rule, CM ’s tape head is again over r. Immediately below are the
clockwise transition rules that simulate this case.

qx, σ1, σj , R, qy :
qx, r, σjr, qy,r′ (∗)

qy,r′ , κ, κ, qy,r′ (∗∗)

where κ ∈ ΣC−{γ, r}. The clockwise transition rule (*) prints N ’s encoded
write symbol σj and sends CM ’s control into state qy,r′ . State qy,r′ moves
CM ’s tape head to the cell containing r. This completes the simulation of
the transition rule.

Left moving transition rules are more difficult to simulate as CM ’s tape
head moves only clockwise. CM begins by marking the current location of
the tape head with the symbol γ. CM now moves each symbol clockwise
by one cell. When CM ’s tape head reads γ the left move is complete. This
process moves the tape head anti-clockwise relative to the tape contents, thus
simulating a left move. Immediately below is given the clockwise transition
rules that mark the tape head’s location with the symbol γ.

qx, σ1, σj , L, qy : qx, l, lγ, qy,j

qx, σ1, σj , L, qy : qx, r, γσj , qy,r

qx, σk, σj , L, qy : qx, σk, γ, qy,j

The clockwise transition rules that move each symbol clockwise by one cell
are of the form:

qy,υ, ρ, υ, qy,ρ

where υ, ρ ∈ ΣC − {γ}. When CM ’s tape head reads γ then CM is in a
state of the form qy,ρ and the unique clockwise transition rule defined by
the state-symbol pair (qy,ρ, γ) will begin simulation of the next transition
rule. This transition rule is of the form (qy, σ1, σk,D, qz) if ρ = r, l and of
the form (qy, ρ, σk,D, qz) if ρ 6= r, l.

Input to N is encoded for CM by a finite state transducer. Given this
encoded input CM simulates the sequence of t transition rules in N ’s com-
putation and halts in state q|Q|+1 the encoding of N ’s halt state q|Q|+1. CM

uses space of O(t). A single computation step of N is simulated in O(t)
steps of CM . Thus the computation time of CM is O(t2). �

5.2.2 Bi-tag systems simulate clockwise Turing machines

In this section we present the bi-tag system, our new variant on the tag
system, and prove that it simulates Turing machines via clockwise Turing
machines. The operation of a bi-tag system is similar to that of a standard
tag system [Min67]. Bi-tag systems are essentially 1-tag systems (and so
they read and delete one symbol per timestep), augmented with additional
context sensitive rules that read, and delete, two symbols per timestep.

5 Tag systems 83

Definition 5.2.3 (Bi-tag system) A bi-tag system is a tuple (A,E, eh, P).
Here A and E are disjoint finite sets of symbols and eh ∈ E is the halt sym-
bol. P is the finite set of productions. Each production is of one of the
following 3 forms:

P (a) = a, P (e, a) ∈ AE, P (e, a) ∈ AAE,

where a ∈ A, e ∈ E, and P is defined on all elements of {A∪((E−{eh})×A)}
and undefined on all elements of {eh}×A. Bi-tag systems are deterministic.

A configuration of a bi-tag system is a word of the form w = A∗(AE∪EA)A∗.
We call w the dataword.

Definition 5.2.4 (BTS computation step) A production is applied in
one of two ways:

(i) if s = as′ then as′ ⊢ s′P (a),

(ii) if s = eas′ then eas′ ⊢ s′P (e, a).

A bi-tag system computation is a finite sequence of computation steps
that are consecutively applied to an initial dataword. If eh is the leftmost
symbol in the dataword then the computation halts.

Example 5.2.1 (Bi-tag system computation.) Let bi-tag system B1 =
({a0, a1}, {e0, e1, e2}, e2, P) where the set P = {a0 → a0, a1 → a1, e0a0 →
a1e0, e0a1 → a1e2, e1a0 → a0e0, e1a1 → a1e2}. Given the word a1e0a0, the
computation of B1 proceeds as follows:

a1e0a0 ⊢ e0a0a1 ⊢ a1a1e0 ⊢ a1e0a1 ⊢ e0a1a1 ⊢ a1a1e2 ⊢ a1e2a1 ⊢ e2a1a1

The computation halts because the halt symbol e2 has become the leftmost
symbol.

Lemma 5.2.5 Let C be a clockwise Turing machine that runs in time t,
then there is a bi-tag system BC that simulates the computation of C in
time O(t2) and space O(t).

Before giving the proof of Lemma 5.2.5 we explain the proof idea. Each
A symbol of BC encodes a symbol of C’s tape alphabet. Each E symbol
of BC encodes a state of C. The location of the E symbol in the dataword
represents the location of C’s tape head, as illustrated in Figure 5.2.2.

Each clockwise transition rule of C is simulated in the following way. The
change of state, symbol and tape head position is simulated by executing a
P production over the E × A pair that encodes the current state and read
symbol (see Figure 5.2.2(c)). A production is then applied to each symbol
in the dataword. This moves the new E×A pair to the left of the dataword,
in order to prepare for the simulation of the next clockwise transition rule.

5 Tag systems 84

(a)

0

01

0

q2 (b)

1

01

0

q3

(c) e20 0 0 1 apply e20→ 1e3

0 0 1 1 e3 apply 0→ 0

0 1 1 e30 apply 0→ 0

1 1 e30 0 apply 1→ 1

1 e30 0 1 apply 1→ 1

(d) e30 0 1 1 simulation complete

Figure 5.2.2: Bi-tag system simulating the clockwise transition rule
(q2, 0, 1, q3). The clockwise Turing machine states q2 and q3 are encoded
as e2 and e3 respectively. The e symbols also mark the location of the sim-
ulated tape head. (a) Configuration of the clockwise Turing machine before
execution of the clockwise transition rule. (b) Configuration of the clock-
wise Turing machine after execution of the clockwise transition rule. (c)
bi-tag system encoding of configuration in (a). (d) Bi-tag system encoding
of configuration in (b).

Proof. Let clockwise Turing machine C=({q1, . . . , q|Q|}, {σ1, . . . , σ|Σ|}, f,
q1, q|Q|). We construct a bi-tag system BC that simulates C’s computation.

BC = (AC , EC , e|Q|, PC)

where AC , EC , PC are defined below.

AC = {a1, . . . , a|Σ|}

C’s tape symbols σ1, . . . , σ|Σ| are encoded as a1, . . . , a|Σ| respectively.

EC = {e1, . . . , e|Q|}

C’s states q1, . . . , q|Q| are encoded as e1, . . . , e|Q| respectively and the en-
coded halt state e|Q| is the halt symbol of BC .

PC = {a1 → a1, . . . , a|Σ| → a|Σ|} ∪ P ′C

P ′C is the set of productions defined on (E − {e|Q|})×A. There is one pro-
duction in P ′C for each clockwise transition rule in C. Clockwise transition
rules fall into two categories, those that write a single symbol from Σ and
those that write a pair of symbols from ΣΣ. The two possible clockwise
transition rules, and their encodings as productions, are as follows

(qx, σi, σj , qy) : exai → ajey

(qx, σi, σjσk, qy) : exai → ajakey

We have constructed a bi-tag system BC that simulates C. BC uses
O(t) space. To simulate a computation step of C, a production is applied

5 Tag systems 85

to each symbol in the dataword that encodes the current configuration of
C. This takes O(t) steps and yields a new dataword that encodes the next
configuration of C’s computation. In this way BC simulates t steps of C’s
computation in time O(t2). The simulation halts when the halt symbol
e|Q| that encodes the halt state of C becomes the leftmost symbol in the
dataword. �

Given a single tape deterministic Turing machine M that runs in time t,
we conclude from Lemmata 5.2.2 and 5.2.5 that M is simulated by a bi-tag
system in time O(t4). However this overhead is easily improved to O(t3) as
the next theorem shows.

Theorem 5.2.6 Let M be a deterministic Turing machine with a single
tape that computes in time t, then there is a bi-tag system BM that simulates
the computation of M in time O(t3) and space O(t).

Proof. From Lemmata 5.2.2 and 5.2.5 a bi-tag system simulates the compu-
tation of M via a clockwise Turing machine CM . From Lemma 5.2.2 CM

simulates M in time O(t2). However, CM uses O(t) space and hence BM

uses O(t) space. BM applies O(t) productions to simulate a clockwise tran-
sition rule of CM . Thus BM executes O(t2) clockwise transition rules to
simulate M via CM in time O(t3). �

5.3 Time complexity of 2-tag systems and small

universal Turing machines

Tag systems where introducted by Post [Pos36] and proved universal by
Minsky [Min61]. Later Cocke and Minsky [CM64] proved 2-tag systems
universal.

Definition 5.3.1 (2-tag system) A tag system consists of a finite alpha-
bet of symbols Σ, a finite set of rules R : Σ → Σ∗ and a deletion number
β ∈ N, β > 1. For a 2-tag system β = 2.

The 2-tag systems we consider are deterministic. The computation of a 2-
tag system acts on a dataword w = σ1σ2 . . . σl. The entire configuration
is given by w. In a computation step, the symbols σ1σ2 are deleted and if
there is a rule for σ1, i.e. a rule of the form σ1 → σl+1 . . . σl+c, then the word
σl+1 . . . σl+c is appended. A dataword (configuration) w2 is obtained from
w1 via a single computation step as follows:

σ1σ2σ3 . . . σl ⊢ σ3 . . . σlσl+1 . . . σl+c

where σ1 → σl+1 . . . σl+c ∈ R. A 2-tag system completes its computation
if (i) |w| < β, or (ii) there is no rule for the leftmost symbol.

5 Tag systems 86

In an earlier version of this work [WN06a] the efficiency of 2-tag systems
was proved by the following chain of simulations

Turing machine 7→ Cyclic tag system 7→ 2-tag system (5.3.1)

In [NW06a] cyclic tag systems are proved efficient polynomial time simu-
lators of Turing machines and in [WN06a] it is proved that 2-tag systems
are efficient simulators of cyclic tag systems. Hence from the sequence of
simulations in Equation (5.3.1) we get the Theorem 5.3.2.

Theorem 5.3.2 ([WN06a]) Let M be a deterministic Turing machine with
a single tape that computes in time t, then there is a 2-tag system TM that
simulates the computation of M in time O(t4 log2 t).

In the sequel we eliminate the cyclic tag system in Equation (5.3.1) to give
the following simulation:

Turing machine 7→ 2-tag system (5.3.2)

This gives the O(t2 log t) overhead in Theorem 5.1.1 whose proof is outlined
below. The new proof outlined here uses ideas from the proof given in
Section 4.3, that cyclic tag systems simulate Turing machines efficiently. The
proof is also similar to the previous proof given in [WN06a] and makes use of
many of the techniques therein. Hence the techniques used in [WN06a] and
Section 4.3 may be applied to the outline given below in order to construct
a detailed simulation.

Proof outline of Theorem 5.1.1

The bulk of the proof is concerned with simulating an arbitrary right mov-
ing transition rule (qy, σ1, σj , R, qz) of M in time O(t log t). The following
equation encodes a Turing machine configuration as a 2-tag dataword:

〈qy, σ1 σ2 σ3 · · · σn〉 = x
y
1x

y
1 x

y
2x

y
2 x

y
3x

y
3 · · · x

y
nx

y
n (aa)2

⌈log2(n)⌉
(5.3.3)

where the current state of the Turing machine is qy, the read symbol is
σ1 and the tape contents is σ1σ2σ3 . . . σn. Each xixi pair of 2-tag system
symbols encoded the Turing machine symbol σi. Note that we decorate xi

symbols with underscripts and slashes. The 2-tag word (aa)2
⌈log2(n)⌉

is used
as a counter. Our 2-tag system algorithm has three stages given below.

Stages 1 and 2 (isolate encoded read symbol)

Stages 1 and 2 isolate the encoded read symbol x1x1 which is the leftmost
encoded Turing machine symbol in Equation (5.3.3). These stages make use

of the tape-length counter (aa)2
⌈log2(n)⌉

. In Stage 1 every aa pair at an odd

5 Tag systems 87

numbered position is marked by changing it to a/a/ and then in Stage 2 every
xx pair at an even numbered position is marked by changing it to x/x/. This
process is iterated until all aa pairs are marked (1 + log2 n iterations), this
gives:

x
y
1x

y
1 x/

0
2x/

0
2 x/

0
3x/

0
3 . . . x/

0
nx/

0
n (a/a/)2

⌈log2(n)⌉

In the configuration above the encoded read symbol has been isolated as it
is the only unmarked encoded tape symbol.

Stages 3 (simulate transition rule)

Note in the initial configuration each encoded 2-tag symbol also carries the
current state information qy. Thus the encoded read symbol that was iso-
lated during Stages 1 and 2 contains all the information required to print
the encoded write symbol, establish the new encoded state, and simulate
the right move. The rule x

y
1 → x/

0
jx/
0
j s2z

encodes the write symbol σj and the
current state qz.

This rule is applied to give:

x/
0
2x/

0
2 x/

0
3x/

0
3 . . . x/

0
nx/

0
n (a/a/)2

⌈log2(n)⌉
x/
0
jx/

0
j s2z

The slashes are removed to give:

s2z

x
0
2x

0
2 x

0
3x

0
3 . . . x

0
nx

0
n aa2⌈log2(n)⌉

x
0

jx
0

j

The dataword is read and the number of s symbols is halved to give:

s2z−1
x
1
2x

1
2 x

1
3x

1
3 . . . x

1
nx

1
n aa2⌈log2(n)⌉

x
1

jx
1

j

Note that when the dataword is read each dataword symbol x
i
v becomes

x
1+i

v this process is repeated, thus halving the number of s symbols with
each iteration. This continues until only a single s symbol remains after z
iterations. At this point each x

i
v symbol in the dataword is of the form x

z
v

and contains the state information. Finally this s symbol is deleted from
the dataword to give:

x
z
2x

z
2 x

z
3x

z
3 . . . x

z
nx

z
n aa2⌈log2(n)⌉

x
z

jx
z

j

The simulation of transition rule (qy, σ1, σj , R, qz) is now complete. A left
moving transition rule may be simulated in a similar manner with some
minor changes. Following simulation of a left moving transition rule the
encoded read symbol will be the rightmost (instead of the leftmost) encoded
read symbol. So in the initial dataword (i.e. Equation (5.3.3)) the encoded
read symbol would be x

y
nx

y
n instead of x

y
1x

y
1. Recall that Stage 2 marks

5 Tag systems 88

encoded tape symbols at even numbered positions. In order to make sure
this rightmost encoded symbol x

y
nx

y
n is not marked we must make sure it

remains in an odd numbered position during Stage 2. Thus, if the encoded
read symbol is at an even numbered position a dummy symbol is appended
to place the encoded read symbol at an odd numbered position. A similar
technique is used during Stage 2 in the proof of Theorem 4.3.2. Finally, if
necessary, the counter value aa2⌈log2(n)⌉

is updated at the end of Stage 3, in
a manner similar to that given in Lemma 3 of [WN06a]. This completes our
proof outline.

Using our proof outline, we show that the 2-tag systems simulate Turing
machines in O(t2 log t) giving the result in Theorem 5.1.1. At timestep t the
space used by M is bounded by t. This is encoded as O(t) symbols in the
dataword of TM . Thus O(t) space is sufficient to simulate M . Simulating
a transition rule involves 3 stages. Each Stage executes in O(t) steps. To
simulate a single transition rule the counter is halved O(log t) times, (i.e.
Stages 1 and 2 are executed O(log t) times) and Stage 3 is executed once.
Thus O(t log t) time is sufficient to simulate a transition rule and O(t2 log t)
time is sufficient to simulate the computation of M .

5.3.1 Applications of efficient 2-tag systems

There are numerous applications of Theorem 5.1.1 besides the improved sim-
ulation time of the small universal Turing machines given in Corollary 5.1.2.
Following our result, many biologically inspired models of computation now
simulate Turing machines in polynomial time instead of exponential time.
Some of these models include neural networks, H-systems and P-systems.
For example, Siegelmann and Margenstern [SM99] give a neural network
that uses only nine high-order neurons to simulate 2-tag systems. Taking
each synchronous update of the nine neurons as a single parallel timestep,
their neural network simulates 2-tag systems in linear time. They note that
“tag systems suffer a significant slow-down ... and thus our result proves
only Turing universality and should not be interpreted complexity-wise as
a Turing equivalent.” Our work shows that their neural network is in fact
efficiently universal. Rogozhin and Verlan [RV06] give a tissue P-system
with eight rules that simulates 2-tag systems in linear time, and thus we
have improved its simulation time overhead from exponential to polyno-
mial. This system uses splicing rules (from H-systems) with membranes
(from P-systems) and is non-deterministic. Harju and Margenstern [HM05]
gave an extended H-system with 280 rules that generates recursively enu-
merable sets using Rogozhin’s 7-state, 4-symbol universal Turing machine.
Using our result from 2-tag systems, the time efficiency of their construction
is improved from exponential to polynomial, with a possible small constant
increase in the number of rules. The efficiency of Hooper’s [Hoo69] small
2-tape universal Turing machine is also improved from exponential to poly-

5 Tag systems 89

nomial. The technique of simulation via 2-tag systems is at the core of many
of the universality proofs in Margenstern’s survey [Mar00]. Our work expo-
nentially improves the time overheads in these simulations, such as Lindgren
and Nordahl’s cellular automata [LN90], Margenstern’s non-erasing Turing
machines [Mar93, Mar95a], and Robinson’s tiling [Rob71].

5.4 Discussion

We have seen from the previous section that our 2-tag system result has
many applications. Bi-tag systems have applications in finding small uni-
versal Turing machine as we will see in Chapter 6. Also, bi-tag systems may
be useful as an alternative to 2-tag systems to give universality results for
other simple models.

As future work, it would be interesting to see if the time efficiency of
2-tag systems and bi-tag systems may be improved further. The different
forms of tag systems including cyclic tag systems seem restricted in how they
work on their dataword. Each symbol is read and the result is appended
to the end of the dataword and thus, the entire configuration must be read
before the appended result can be read. This is similar to placing the result
at the bottom of a queue. A Turing machine seems less restricted in this
way as it can repeatedly work on a section of its tape before moving to some
other location. It remains to be seen if the time efficiency of these systems
may be further improved.

6

Four small universal Turing

machines

6.1 Introduction

In this chapter we present (standard) universal Turing machines with state-
symbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These are the smallest known
universal machines with 5, 4, 3, and 2 symbols, respectively. Our machines
simulate Turing machines via bi-tag systems, a form of tag system which we
defined in Chapter 5. Each machine is plotted as a triangle in Figure 6.1.1.

The earliest small universal Turing machines simulated Turing machines
directly [Ike58, Wat61]. Subsequently, the technique of indirect simulation,
via 2-tag systems, was applied by Minsky [Min62a]. In 1962 Minsky [Min62a]
constructed a 7-state, 4-symbol universal Turing machine that simulates
Turing machines via 2-tag systems [CM64]. Minsky’s technique of 2-tag
simulation was extended by Rogozhin [Rog96, Rog98] to construct small
universal Turing machines with state-symbol pairs of (22, 2), (10, 3), (7, 4),
(5, 5), (4, 6), (3, 10) and (2, 18). Subsequently, some of these machines were
reduced in size to give machines with state-symbol pairs of (3, 9) [KR02],
(19, 2) [Bai01] and (7, 4) [Bai01]. The current smallest 2-tag simulators of
Rogozhin et al. are plotted as hollow circles in Figure 6.1.1.

Our 5-symbol machine uses the same number of instructions (22) as
the smallest known universal Turing machine (Rogozhin’s 6-symbol ma-
chine [Rog96]). Also, our 5-symbol machine has less instructions than Ro-
gozhin’s 5-symbol machine. Since Minsky [Min62a] constructed his 7-state,
4-symbol machine, a number of authors [Bai01, Rob91, Rog96] have de-
creased the number of transition rules used for 4-symbol machines. How-
ever, the 6-state, 4-symbol machine we present here is the first reduction in
the number of states.

The halting problem has been proved decidable for the following state-
symbol pairs: (2, 2) [Kud96, Pav73], (3, 2) [Pav78], (2, 3) (Pavlotskaya, un-
published), (1, n) [Her68c], and (n, 1) (trivial) for n > 1. These results
induce the decidable halting problem curve given in Figure 6.1.1. Also,
these decidability results imply that a universal Turing machine, that simu-
lates any Turing machine M and halts if and only if M halts, is not possible

90

6 Four small universal machines 91

bc : universal, 2-tag simulation, O(t4 log2 t)

u : universal, bi-tag simulation, O(t6)

: universal curve

: decidable halting problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols u

u

uu

u

bc

bc

bc

bc

bc

bc

bc

Figure 6.1.1: State-symbol plot of small universal Turing machines. Each of
our new universal Turing machines is represented by a solid triangle.

for these state-symbol pairs. Hence these results give lower bounds on the
size of universal machines of this type. The decidable halting problem curve
in Figure 6.1.1 could be considered a non-universality curve in this sense.
Following our results there are 39 state-symbol pairs that remain open.

Corollary 5.1.2, states that the universal Turing machines of Minsky and
Rogozhin et al. simulate Turing machines in O(t4 log2 t) time. Our universal
Turing machines in this chapter simulate bi-tag systems with a quadratic
polynomial increase in time. Hence from Theorem 5.2.6 these universal
Turing machines simulate Turing machines efficiently in O(t6(n)) time.

Note that prior to constructing our 15-state, 2-symbol machine we con-
structed an 18-state, 2-symbol machine [NW07a] which is also plotted as
a triangle in Figure 6.1.1. The results in the chapter appeared in [Nea06,
NW07a, NW].

6 Four small universal machines 92

6.2 Universal Turing machines

In this section we give the input encoding to our universal Turing machines.
Following this we give each machine and describe its operation by explain-
ing how it simulates bi-tag systems. Bi-tag systems are defined in Sec-
tion 5.2.2 of Chapter 5. Let B = (A,E, eh, P) be a bi-tag system where
A = {a1, . . . , aq} and E = {e1, . . . , eh}. The encoding of B as a word is
denoted 〈B〉. The encodings of symbols a ∈ A and e ∈ E are denoted 〈a〉
and 〈e〉, respectively. The encodings of productions P (a) and P (e, a) are
denoted as 〈P (a)〉 and 〈P (e, a)〉, respectively.

Definition 6.2.1 The encoding of a configuration of B is of the form

. . . ccc〈B〉S∗G(〈A〉N)∗
(

〈A〉N〈E〉 ∪ 〈E〉〈A〉N
)

(〈A〉N)∗Dccc . . . (6.2.1)

where 〈B〉 is given by Equation (6.2.2), S and G are given by Table 6.2.1,

and (〈A〉N)∗
(

〈A〉N〈E〉∪〈E〉〈A〉N
)

(〈A〉N)∗D encodes B’s dataword via Ta-

ble 6.2.1.

〈B〉 =H〈P (eh−1, aq)〉V 〈P (eh−1, aq−1)〉 . . . V 〈P (eh−1, a1)〉

...

V 〈P (e1, aq)〉V 〈P (e1, aq−1)〉 . . . V 〈P (e1, a1)〉

V 2〈P (aq)〉V
2〈P (aq−1)〉 . . . V

2〈P (a1)〉V
3

(6.2.2)

where 〈P 〉 for Turing machines U9,3, U5,5, U6,4, and U15,2 is given by Equa-
tions (6.2.3), (6.2.4), (6.2.5), and (6.2.7), respectively, and V and H are
given by Table 6.2.1. In Equation (6.2.1) the position of the tape head is
over the rightmost symbol of G for U15,2 and is over the symbol immediately
to the right of 〈B〉S∗ for each of the other Turing machines. The initial
state of each machine is u1 and the blank symbol is c.

〈ai〉 〈ej〉 〈eh〉 S G N D V H

U5,5 b4i−1 b4jq b4hq+3δ d2 ǫ δ ǫ δ cdδ

U6,4 b8i−5 b8jq b8q(h+1)+5δ g2 ǫ δ b δ Eq (6.2.6)

U9,3 b4i−1 b4jq b4hq c2 ǫ δ ǫ δcc bccbc

U15,2 (cb)8i−5 (cb)8jq (cb)8hq+2bb (cc)2 bc bb ǫ cb bbcc

Table 6.2.1: Symbol values for Equations (6.2.1) and (6.2.2). The value of
H for U6,4 is given by Equation (6.2.6) in Section 6.2.4.

6.2.1 Universal Turing machine algorithm overview

Each of our universal Turing machines uses the same basic simulation al-
gorithm. Here we give a brief description of the algorithm by explaining

6 Four small universal machines 93

encoding of bi-tag system B -�
encoding

of dataword
� -

〈a〉� -

δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b b b δ 〈a〉 〈e〉 δ

δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b b b δ 〈a〉 〈e〉 δ
⇑ � tape head of U

δ · · · δ δ δ δ δ〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ/ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b δ 〈a〉 〈e〉 δ
⇑

δ · · · δ δ δ δ/ δ/〈P 〉 〈P 〉 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ
⇑

(i) δ · · · δ δ δ/ δ/ δ/〈P 〉 〈P〉 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ
⇑indexed encoded

production

Figure 6.2.1: Indexing of an encoded production during simulation of a
production of B. The encoded production 〈P 〉, to be executed, is indexed
by reading the leftmost encoded symbol 〈a〉 in the encoded dataword and
marking off δ symbols in the encoding of B.

how our machines locate and simulate a production. The encoded produc-
tion to be simulated is located using a unary indexing method as illustrated
in Figure 6.2.1. The encoded production, 〈P (ai)〉 or 〈P (ej , ai)〉 in Equa-
tion (6.2.2), is indexed (pointed to) by the number of symbols contained
in the leftmost encoded symbol or pair of symbols in the encoded data-
word (Equation (6.2.1)). For illustration purposes we assume that we are
using U9,3. If the leftmost encoded symbol is 〈ai〉 = b4i−1 (Table 6.2.1) then
the value 4i − 1 is used to index 〈P (ai)〉. If the leftmost encoded symbol
is 〈ej〉 = b4jq, and 〈ai〉 = b4i−1 is adjacent, then the value 4jq + 4i − 1 is
used to index 〈P (ej , ai)〉. The number of b symbols in the encoded symbol,
or pair of encoded symbols, is equal to the number of δc∗ words between
the leftmost encoded symbol and the encoded production to be simulated.
To locate this production, U9,3 simply changes each δc∗ to δb∗, for each b
in the leftmost encoded symbol or pair of encoded symbols. This process
continues until the δ that separates two encoded symbols in the dataword
is read. Note from Equation (6.2.1) that there is no δ marker between each
〈E〉 and the 〈A〉 to its right, thus allowing 〈ej〉〈ai〉 to be read together dur-
ing indexing. After indexing, our machines print the indexed production
immediately to the right of the encoded dataword as shown in Figure 6.2.2.

6 Four small universal machines 94

encoding of bi-tag system B -�

〈P 〉� -

(i) δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ c c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b c c · · ·
⇑

δ · · · δ δ δ/ δ/ δ/〈P 〉 c/ c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b c c · · ·
⇑

(ii) δ · · · δ δ δ/ δ/ δ/〈P 〉 c/ c/ c/ 〈P 〉 〈P 〉 b/ b/ b/ δ 〈a〉 〈e〉 δ b b b c · · ·
⇑

(iii) δ · · · δ δ δ δ δ〈P 〉 c c c 〈P 〉 〈P 〉 c c c c 〈a〉 〈e〉 δ b b b c · · ·
⇑

encoding
of dataword

� -

〈a〉� -

Figure 6.2.2: Printing of an encoded production during simulation of a pro-
duction of B. Over a number of timesteps, the encoded production 〈P 〉,
indexed in configuration (i) of Figure 6.2.1, is printed to the right of the
encoded dataword.

After the indexed production has been read, then 〈B〉, the encoding of B,
is restored to its original value as illustrated in configurations (ii) and (iii)
of Figure 6.2.2. This completes the simulation of the production. Exten-
sive computer testing has been carried out on each of our universal Turing
machines.

6.2.2 U9,3

The following equation is used with Definition 6.2.1 to encode bi-tag system
configurations for U9,3.

〈P 〉 =

δδccδc8i if P (ai)

δccδδc8mq+2δc8k if P (ej , ai) = akem

δδc8mq+2δc8kδc8v if P (ej , ai) = avakem

(6.2.3)

6 Four small universal machines 95

u1 u2 u3 u4 u5 u6 u7 u8 u9

c bRu1 cLu3 cLu3 bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b cLu2 cLu2 bLu4 bLu4 bRu6 bRu7 cRu9 cRu8

δ δRu3 δLu2 δRu1 δLu4 δLu8 δRu6 δRu7 δRu8 cRu1

Table 6.2.2: Table of behaviour for U9,3.

Example 6.2.1 (U9,3 simulating the execution of the production
P (a1)) This example is presented using three cycles. The tape head of
U9,3 is given by an underline. The current state of U9,3 is given to the
left in bold. The dataword a1ejai is encoded via Equation (6.2.1) and Ta-
ble 6.2.1 as bbbδb4jqb4i−1δ and P (a1) is encoded via Equation (6.2.3) as
〈P (a1)〉 = δδccδc8 . From Equation (6.2.1) we get the initial configuration:

u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδccbbbδb4jqb4i−1δccc . . .

Cycle 1 (Index next production). In Cycle 1 (Table 6.2.3), U9,3 reads
the leftmost encoded symbol and locates the next encoded production to
execute (see Figure 6.2.1). U9,3 scans right until it reads b in state u1.
Then U9,3 scans left in states u2 and u3 until it reads the subword δc∗.
This subword is changed to δb∗ as U9,3 scans right in states u1 and u3. The
process is repeated until U9,3 reads b in state u3. This indicates that we have
finished reading the leftmost encoded symbol, or pair of encoded symbols,
and that the encoded production to be executed has been indexed. This
signals the end of Cycle 1 and the beginning of Cycle 2.

u1 u2 u3

c bRu1 cLu3 cLu3

b cLu2 cLu2 bLu4

δ δRu3 δLu2 δRu1

Table 6.2.3: Cycle 1 of U9,3.

u4 u5 u6 u7 u8 u9

c bLu9 cRu6 bLu4 δLu4 cRu7 bLu5

b bLu4 bRu6 bRu7

δ δLu4 δLu8 δRu6 δRu7 δRu8

Table 6.2.4: Cycle 2 of U9,3.

⊢ u2u2u2, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

⊢2 u3u3u3, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδcccbbδb4jqb4i−1δccc . . .

⊢4 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δccδccδbbbbbδb4jqb4i−1δccc . . .

⊢44 u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

⊢2 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc8δbbδbbδbbbbbδb4jqb4i−1δccc . . .

In the configuration immediately above the encoded production 〈P (a1)〉 has
been indexed and we have entered Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 6.2.4) prints the encoded
production, that was indexed in Cycle 1, immediately to the right of the

6 Four small universal machines 96

encoded dataword (see Figure 6.2.2). U9,3 scans left in state u4 and records
the next symbol of the encoded production to be printed. If U9,3 reads the
subword ccc it enters state u6, scans right, and prints b at the right end of
the encoded dataword. A single b is printed for each cc pair that does not
have δ immediately to its left. If U9,3 reads the subword cδcc it scans right
in state u7 and prints δ at the right end of the encoded dataword. This
process is repeated until the end of the encoded production is detected by
reading the subword δδcc which causes U9,3 to enter Cycle 3.

⊢13 u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6cc(δbb)3bbbδb4jqb4i−1δccc . . .

⊢3 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

⊢4(jq+i)+15 u6u6u6, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δccc . . .

⊢ u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδc6bb(δbb)3bbbδb4jqb4i−1δbccc . . .

In the configuration immediately above the first symbol of the encoded pro-
duction 〈P (a1)〉 has been printed. Following the printing of the final symbol
of the encoded production we get:

⊢∗ u4u4u4, . . . 〈P (a2)〉(δcc)
2δδccδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

⊢3 u8u8u8, . . . 〈P (a2)〉(δcc)
2δδbbδb8(δbb)3bbbδb4jqb4i−1δb3δccc . . .

In the configuration immediately above we have finished printing the en-
coded production 〈P (a1)〉 to the right of the dataword and we have entered
Cycle 3.

Cycle 3 (Restore tape). Cycle 3 (Table 6.2.5) restores 〈B〉 to its original
value (see configurations (ii) and (iii) of Figure 6.2.2). The tape head of
U9,3 scans right switching between states u8 and u9 changing b symbols to c
symbols. This continues until U9,3 reads the δ marking the leftmost end of
the dataword in u9. Note from Equations (6.2.2) and (6.2.3) that there is an
even number of b symbols between each pair of δ symbols in 〈B〉 hence each
δ symbol in 〈B〉 will be read in state u8. Each ai symbol in the dataword is
encoded by an odd number of b symbols (〈ai〉 = b4i−1) and hence the first
δ symbol in the dataword will be read in state u9. This δ symbol marks
the left end of the new dataword and causes U9,3 to enter state u1 thus
completing Cycle 3 and the production simulation.

u8 u9

b cRu9 cRu8

δ δRu8 cRu1

Table 6.2.5: Cycle 3 of U9,3.

⊢25 u9u9u9, . . . 〈P (a2)〉(δcc)
2δδccδc8(δcc)3cccδb4jqb4i−1δb3δccc . . .

⊢ u1u1u1, . . . 〈P (a2)〉(δcc)
2δδccδc8(δcc)3ccccbb4jq−1b4i−1δb3δccc . . .

6 Four small universal machines 97

In the configuration immediately above our example simulation of produc-
tion P (a1) is complete.

Theorem 6.2.2 Given a bi-tag system B that runs in time t the computa-
tion of B is simulated by U9,3 in time O(t2).

Proof. In order to prove the correctness of U9,3 we prove that U9,3 simulates
any possible P (a) or P (e, a) production of an arbitrary bi-tag system and,
that U9,3 also simulates halting when the encoded halt symbol 〈eh〉 is en-
countered. In Example 6.2.1 U9,3 simulates P (a1) for an arbitrary bi-tag
system where a1 is the leftmost symbol in a fixed dataword. This example
easily generalises to any production P (ai) where ai is the leftmost symbol
in an arbitrary dataword. When some e ∈ E is the leftmost symbol in the
dataword then some production P (e, a) must be executed. The simulation
of P (a1) in Example 6.2.1 is also used to verify the simulation of P (e, a).
Note from Equation (6.2.1) that there is no δ marker between each 〈ej〉 and
the adjacent 〈ai〉 to its right, thus 〈ej〉 and 〈ai〉 are read together during
Cycle 1. Using the encoding in Definition 6.2.1, the number of b symbols
in 〈ej〉〈ai〉 indexes 〈P (e, a)〉. Thus, the indexing of 〈P (e, a)〉 is carried out
in the same manner as the indexing of 〈P (a)〉. The printing of production
〈P (e, a)〉 during Cycle 2 and the subsequent restoring of 〈B〉 during Cycle 3
proceed in the same manner as with P (a1).

If the encoded halt symbol 〈eh〉 = b4hq is the leftmost symbol in the
encoded dataword, and 〈ai〉 = b4−i is adjacent, this is encoded via Defini-
tion 6.2.1 as follows:

u1u1u1, bccbc〈P (eh−1, aq)〉 . . . 〈P (a1)〉(δcc)
3(cc)∗bb4hq−1b4i−1δ(〈A〉δ)∗ccc . . .

During Cycle 1, immediately after reading the (4hq + 3)th b symbol in the
dataword, U9,3 scans left in u2 and we get the following:

⊢∗ u2u2u2, bccbc〈P (eh−1, aq)〉 . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

⊢4 u5u5u5, bbbbc〈P (eh−1, aq)〉 . . . 〈P (a1)〉(δcc)
3(cc)∗c4hq+3b4i−4δ(〈A〉δ)∗ccc . . .

There is no transition rule in Table 6.2.2 for the case ‘when in u5 read b’,
hence the computation halts. �

The proof of correctness given for U9,3 can be applied to the remaining
machines in a straightforward way, so we do not restate it.

6 Four small universal machines 98

6.2.3 U5,5

The following equation is used with Definition 6.2.1 to encode bi-tag system
configurations for U5,5.

〈P 〉 =

δδd16i−6 if P (ai)

δδd16mqδd16k−6 if P (ej , ai) = akem

δδd16hq+14δd16k−6 if P (ej , ai) = akeh

δd16mqδd16k−2δd16v−6 if P (ej , ai) = avakem

δd16hq+14δd16k−2δd16v−6 if P (ej , ai) = avakeh

(6.2.4)

where em 6= eh.

u1 u2 u3 u4 u5

g bLu1 gRu1 bLu3

b gLu1 gRu2 dRu5 gRu4 dRu3

δ cRu2 cRu2 δRu3 cRu4 dRu1

c δLu1 bLu3 δLu3 δLu3

d bLu1 gRu2 bLu5 bLu2 bLu4

Table 6.2.6: Table of behaviour for U5,5.

The dataword a1ejai is encoded via Equation (6.2.1) and Table 6.2.1 as
bbbδb4jqb4i−1δ, and P (a1) is encoded via Equation (6.2.4) as 〈P (a1)〉 = δδd10.
From Equation (6.2.1) we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδbbbδb4jqb4i−1δccc . . .

Cycle 1 (Index next production). In Cycle 1 (Table 6.2.7) when U5,5

reads b in state u1, it changes it to g and scans left until it reads δ. This
δ is changed to c and U5,5 then enters state u2 and scans right until it
reads g which causes it to re-enter state u1. This process is repeated until
U5,5 reads the δ that separates a pair of encoded symbols in the encoded
dataword. This signals the end of Cycle 1 and the beginning of Cycle 2.

u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

d bLu1

Table 6.2.7: Cycle 1 of U5,5.

u2 u3 u4 u5

g bLu3

b gRu2 gRu4

δ cRu2 δRu3 cRu4

c bLu3 δLu3 δLu3

d gRu2 bLu5 bLu2 bLu4

Table 6.2.8: Cycle 2 of U5,5.

6 Four small universal machines 99

⊢3 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδcgbbδb4jqb4i−1δccc . . .

⊢18 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10cccgggδb4jqb4i−1δccc . . .

⊢ u2u2u2, . . . δ2〈P (a2)〉δ
2δδd10cccgggcbb4jq−1b4i−1δccc . . .

Cycle 2 (Print production). Cycle 2 (Table 6.2.8) begins with U5,5

scanning right and printing b to the right of the encoded dataword. Following
this U5,5 scans left in state u3 and records the next symbol of the encoded
production to be printed. If U5,5 reads the subword dddd it enters state u2,
scans right, and prints b at the right end of the encoded dataword. If U5,5

reads the subword δdd it scans right in state u4 and prints δ at the right
end of the encoded dataword. This process is repeated until the end of the
encoded production is detected by reading δ in state u3, which causes U5,5

to enter Cycle 3.

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδd6ddddδδδbbbδb4jqb4i−1δbccc . . .

⊢3 u2u2u2, . . . δ2〈P (a2)〉δ
2δδd6dbbbδδδbbbδb4jqb4i−1δbccc . . .

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδddb8δδδbbbδb4jqb4i−1δbbbccc . . .

⊢2 u4u4u4, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbccc . . .

⊢∗ u3u3u3, . . . δ2〈P (a2)〉δ
2δδbbb8δδδbbbδb4jqb4i−1δbbbδccc . . .

Cycle 3 (Restore tape). In Cycle 3 (Table 6.2.9) the tape head of U5,5

scans right switching between states u3 and u5 changing b symbols to d
symbols. This continues until U5,5 reads the δ marking the leftmost end of
the encoded dataword in u5. Note from Equations (6.2.4) and (6.2.2) that
there is an even number of d symbols between each pair of δ symbols in 〈B〉
hence each δ symbol in 〈B〉 will be read in state u3. Each ai symbol in the
dataword is encoded by an odd number of symbols (〈ai〉 = b4i−1) and hence
the first δ symbol in the dataword will be read in state u5. This causes U5,5

to enter state u1 thus completing Cycle 3 and the production simulation.

u3 u5

b dRu5 dRu3

δ δRu3 dRu1

Table 6.2.9: Cycle 3 of U5,5.

⊢19 u1u1u1, . . . δ2〈P (a2)〉δ
2δδd10δδδddddbb4jq−1b4i−1δbbbδccc . . .

Halting for U5,5. If the encoded halt symbol 〈eh〉 = b4hq+3δ is the leftmost
symbol in the encoded dataword then this is encoded via Definition 6.2.1 as
follows:

u1u1u1, cdδ〈P (eh−1, aq)〉δ . . . δ2〈P (a1)〉δ
3(dd)∗bb4hq+2δ(〈A〉δ)∗ccc . . .

6 Four small universal machines 100

The computation continues as before until U5,5 enters Cycle 2 and scans left
in u3. Immediately after U5,5 reads the leftmost d during this leftward scan
we get:

⊢ u5u5u5, cbδ〈P (eh−1, aq)〉
′δ . . . δ2〈P (a1)〉

′δ3(dd)∗b4hq+3δ(〈A〉δ)∗bccc . . .

In the configuration above, 〈P 〉′ denotes the word in which all the d symbols
in 〈P 〉 are changed to b symbols. There is no transition rule in Table 6.2.6
for the case ‘when in u5 read c’ hence the computation halts.

6.2.4 U6,4

The following equation is used with Definition 6.2.1 to encode bi-tag system
configurations for U6,4.

〈P 〉 =

δ5g12i−10δ if P (ai)

δ4g12mqδδg12k−10δ if P (ej , ai) = akem

δ4g12q(h+1)+8δδg12k−10δ if P (ej , ai) = akeh

δ2g12mqδδg12hq+12k−4δδg12v−10δ if P (ej , ai) = avakem

δ2g12q(h+1)+8δδg12hq+12k−4δδg12v−10δ if P (ej , ai) = avakeh

(6.2.5)
where em 6= eh.

u1 u2 u3 u4 u5 u6

g bLu1 gRu1 bLu3 bRu2 bLu6 bLu4

b gLu1 gRu2 bLu5 gRu4 gRu6 gRu5

δ cRu2 cRu2 δLu5 cRu4 δRu5 gRu1

c δLu1 gRu5 δLu3 cRu5 bLu3

Table 6.2.10: Table of behaviour for U6,4.

The dataword a1ejai is encoded via Equation (6.2.1) and Table (6.2.1) as
bbbδb8jqb8i−5δb. From Equation (6.2.1) we get the initial configuration:

u1u1u1, . . . δ2〈P (a2)〉δ
2〈P (a1)〉δδδbbbδb

8jqb8i−5δbccc . . .

Cycle 1 (Index next production). In Cycle 1 (Table 6.2.11) when U6,4

reads b in state u1 it scans left until it reads δ. This δ is changed to c and
U6,4 then enters state u2 and scans right until it reads g which causes it
to re-enter state u1. This process is repeated until U6,4 reads the δ that
separates a pair of encoded symbols in the encoded dataword. This signals
the end of Cycle 1 and the beginning of Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 6.2.12) begins with U6,4

scanning right and printing bb to the right of the encoded dataword. Fol-
lowing this, U6,4 scans left in state u3 and records the next symbol of the

6 Four small universal machines 101

u1 u2

g bLu1 gRu1

b gLu1 gRu2

δ cRu2 cRu2

c δLu1

Table 6.2.11: Cycle 1 of U6,4.

u2 u3 u4 u5 u6

g bLu3 bRu2 bLu6 bLu4

b gRu2 bLu5 gRu4

δ cRu2 δLu5 cRu4 δRu5

c gRu5 δLu3 cRu5 bLu3

Table 6.2.12: Cycle 2 of U6,4.

encoded production to be printed. If U6,4 reads the subword gggδ or gggb
it enters state u2, scans right, and prints bb at the right end of the encoded
dataword. If U6,4 reads the subword δggb it scans right in state u4 and
prints δb at the right end of the encoded dataword. This process is repeated
until the end of the encoded production is detected by reading δ in state u5,
which causes U6,4 to enter Cycle 3.

Cycle 3 (Restore tape). In Cycle 3 (Table 6.2.13) the tape head of U6,4

scans right switching between states u5 and u6, changing b symbols to g
symbols. This continues until U6,4 reads the δ marking the leftmost end of
the encoded dataword in u6. Note from Equations (6.2.5) and (6.2.2) that
there is an even number of g symbols between each pair of δ symbols in
〈B〉, hence each δ symbol in 〈B〉 is read in state u5. Each ai symbol in the
dataword is encoded by an odd number of symbols (〈ai〉 = b8i−5) and hence
the first δ symbol in the dataword is read in state u6. This causes U6,4 to
enter state u1, thus completing Cycle 3 and the production simulation.

u5 u6

b gRu6 gRu5

δ δRu5 gRu1

Table 6.2.13: Cycle 3 of U6,4.

Special case for U6,4. If we are simulating a production of the form
P (e, a) = avakem we have a special case. Note from the fourth row of
Equation 6.2.5 and Cycle 2 that the simulation of P (e, a) = avakem for U6,4

results in the word b8v−5δb8hq+8k−3δb8mqb being printed to the right of the
encoded dataword. From Table 6.2.1 it is clear that ak is not encoded in this
word in its usual from. However when U6,4 reads the subword b8hq+8k−3δ it
indexes 〈P (ak)〉 in H which results in 〈ak〉 being printed to the dataword.
To see this, note that the value of H from Equation (6.2.2) for U6,4 is as
follows:

H = cgbV 2〈P (aq)〉V
2〈P (aq−1)〉 . . . V

2〈P (a1)〉V
3 (6.2.6)

The halting condition for U6,4 occurs in a similar manner to that of U5,5.
Halting occurs during the first scan left in Cycle 2 when U6,4 reads c in state

6 Four small universal machines 102

u6 at the left end of H (note from Table 6.2.10 that there is no transition
rule for state-symbol pair (u6, c)).

6.2.5 U15,2

The following equation is used with Definition 6.2.1 to encode bi-tag system
configurations for U15,2.

〈P 〉 =

(cb)4(cccb)2(cc)8i−5 if P (ai)

(cb)5(cc)8mq(cccb)2(cc)8k−5 if P (ej , ai) = akem

(cb)3(cccb)2(cc)8hq+2(cccb)2(cc)8k−5 if P (ej , ai) = akeh

(cb)3(cc)8mq(cccb)2(cc)8k−5(cccb)2(cc)8v−5 if P (ej , ai) = avakem

cb(cccb)2(cc)8hq+2(cccb)2(cc)8k−5(cccb)2(cc)8v−5

if P (ej , ai) = avakeh

(6.2.7)
where em 6= eh.

U15,2 u1 u2 u3 u4 u5 u6 u7 u8

c cRu2 bRu3 cLu7 cLu6 bRu1 bLu4 cLu8 bLu9

b bRu1 bRu1 cLu5 bLu5 bLu4 bLu4 bLu7 bLu7

U15,2 u9 u10 u11 u12 u13 u14 u15

c cRu1 bLu11 cRu12 cRu13 cLu2 cLu3 cRu14

b bLu10 bRu14 bRu12 bRu12 cRu15 bRu14

Table 6.2.14: Table of behaviour for U15,2.

Example 6.2.2 (U15,2 simulating the execution of the production
P (a1)) The example dataword a1ejai is encoded via Equation (6.2.1) and
Table (6.2.1) as cbcbcbbb(cb)8jq(cb)8i−5bb and P (a1) is encoded via Equa-
tion 6.2.7 as 〈P (a1)〉 = (cb)4(cccb)2(cc)3. Thus from Equation (6.2.1) we get
the following initial configuration

u1u1u1, . . . 〈P (a2)〉(cb)
6(cccb)2(cc)3cb cb cb bc cb cb cb bb(cb)8jq+8i−5bb c . . .

In this example we explain how U15,2 operates by considering how it treats
pairs of symbols during each cycle. Thus, the extra whitespace between each
pair of symbols is to improve readability and help illustrate our explanation
of U15,2’s operation.

Cycle 1 (Index next production). In Cycle 1 (Table 6.2.15) U15,2 scans
right in states u1, u2 and u3 until it reads the subword ccb which it changes

6 Four small universal machines 103

to cbc. Following this, it scans left in states u4, u5 and u6 until it reads the
subword cb. This cb is changed to bb and U15,2 re-enters state u1 and scans
right. This process is repeated until U15,2 has finished reading the encoded
read symbol 〈ai〉 or symbols 〈ej〉 and 〈ai〉. This occurs when the subword
ccb no longer appears to the right of the tape head and signals the end of
Cycle 1 and the beginning of Cycle 2.

U15,2 u1 u2 u3 u4 u5 u6

c cRu2 bRu3 cLu7 cLu6 bRu1 bLu4

b bRu1 bRu1 cLu5 bLu5 bLu4 bLu4

Table 6.2.15: Cycle 1 of U15,2.

⊢3 u5u5u5, . . . 〈P 〉(cb)6(cccb)2(cc)3cb cb cb bc bc cb cb bb(cb)8jq+8i−5bbc . . .

⊢4 u5u5u5, . . . 〈P 〉(cb)6(cccb)2(cc)3cb cb cb bc bc cb cb bb(cb)8jq+8i−5bbc . . .

⊢4 u2u2u2, . . . 〈P 〉(cb)6(cccb)2(cc)3cb cb bb bc bc cb cb bb(cb)8jq+8i−5bbc . . .

⊢20 u2u2u2, . . . 〈P 〉(cb)6(cccb)2(cc)3cb bb bb bc bc bc cb bb(cb)8jq+8i−5bbc . . .

⊢28 u2u2u2, . . . 〈P 〉(cb)6(cccb)2(cc)3bb bb bb bc bc bc bc bb(cb)8jq+8i−5bbc . . .

Note that in the configuration immediately above each cb subword in the
encoded read symbol 〈a1〉 = cbcbcb has been changed to the subword bc.
Note also that the subword ccb which causes a scan to the left in u4, u5,
and u6 no longer appears in the configuration to the right of the tape head.
This causes U15,2 to enter Cycle 2.

Cycle 2 (Print production). Cycle 2 (Table 6.2.16) begins with U15,2

scanning right and printing cb to the right of the encoded dataword. Follow-
ing this U15,2 scans left in states u7, u8, u9, u10 and u11 and records the next
symbol of the encoded production to be printed. If, during a scan left, U15,2

reads the subword ccc then it scans right in states u1 and u2 and changes
the cc immediately to the right of the encoded dataword to cb. If, during a
scan left, U15,2 reads the subword ccbcc it scans right in states u12 and u13

and changes the first c to the right of the encoded dataword to a b. This
process is repeated until the end of the encoded production is detected by
reading the subword bcbcc during the scan left. This causes U15,2 to enter
Cycle 3.

6 Four small universal machines 104

U15,2 u1 u2 u3 u7 u8

c cRu2 bRu3 cLu7 cLu8 bLu9

b bRu1 bRu1 cLu5 bLu7 bLu7

U15,2 u9 u10 u11 u12 u13

c cRu1 bLu11 cRu12 cRu13 cLu2

b bLu10 bRu14 bRu12 bRu12

Table 6.2.16: Cycle 2 of U15,2.

⊢∗ u1u1u1, . . . 〈P 〉(cb)6(cccb)2cc cc cc(bb)3(bc)4bb(cb)8jq+8i−5bb cc cc cc . . .

⊢3 u7u7u7, . . . 〈P 〉(cb)6(cccb)2cc cc cc(bb)3(bc)4bb(cb)8jq+8i−5bb cb cc cc . . .

⊢∗ u7u7u7, . . . 〈P 〉(cb)6(cccb)2cc cc cc(bb)3(bc)4bb(cb)8jq+8i−5bb cb cc cc . . .

⊢3 u1u1u1, . . . 〈P 〉(cb)6(cccb)2cc cc bc(bb)3(bc)4bb(cb)8jq+8i−5bb cb cc cc . . .

⊢∗ u7u7u7, . . . 〈P 〉(cb)6(cccb)2cc cc bc(bb)3(bc)4bb(cb)8jq+8i−5bb cb cb cc . . .

Each time the subword ccc is read during a scan left in states u7, u8, and u9,
U15,2 scans right and prints cb at the right of the encoded dataword. Thus
we get:

⊢∗ u7u7u7, . . . 〈P 〉(cb)6cc cb cc cb cc bc bc(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3 cc cc . . .

⊢5 u12u12u12, . . . 〈P 〉(cb)6cc cb cc bb bc bc bc(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3 cc cc . . .

⊢∗ u7u7u7, . . . 〈P 〉(cb)6cc cb cc bb(bc)3(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3 bc cc . . .

Each time the subword ccbcc is read during a scan left in states u7, u8,
u9, u10, and u11 U15,2 scans right and prints b at the right of the encoded
dataword. Thus we get:

⊢∗ u7u7u7, . . . 〈P 〉(cb)4cb cb cc bb bc bb(bc)3(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3bb c . . .

⊢5 u14u14u14, . . . 〈P 〉(cb)
4cb bb bc bb bc bb(bc)3(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3bb c . . .

When the subword bcbcc is read during a scan left in states u7, u8, u9, u10,
and u11 Cycle 2 is complete and Cycle 3 is entered. Thus in the configura-
tion immediately above U15,2 has entered Cycle 3.

Cycle 3 (Restore tape). In Cycle 3 (Table 6.2.17) the tape head of U15,2

scans right in states u14 and u15 changing each bc to cc and each bb to cb.
This continues until U15,2 reads a c in state u14. This c marks the leftmost
end of the dataword. Note that during Cycles 1 and 2 each cc in 〈B〉 and
each cb in the encoded read symbol are changed to the subwords bc. Also
during Cycles 1 and 2, each cb subword in 〈B〉 is changed to the subword

6 Four small universal machines 105

bb. Thus c will not be read in u14 until we encounter the subword cb at the
left end of the next encoded symbol to be read in the dataword.

⊢9 u15u15u15, . . . 〈P 〉(cb)
4cb cb cc cb cc cb(bc)3(bb)3(bc)4bb(cb)8jq+8i−5bb(cb)3bb c . . .

⊢∗ u14u14u14, . . . 〈P 〉(cb)6(cccb)2(cc)3(cb)3(cc)4 cb cb(cb)8jq+8i−6bb(cb)3bb c . . .

⊢3 u1u1u1, . . . 〈P 〉(cb)6(cccb)2(cc)3(cb)3(cc)4 bc cb(cb)8jq+8i−6bb(cb)3bb c . . .

In the configuration immediately above the example simulation of produc-
tion 〈P (a1)〉 is complete. The encoded symbol 〈a1〉 = (cb)3 has been ap-
pended onto the right end of the dataword, the encoded tag system 〈B〉 has
been restored to its original value and U15,2 is ready to read the encoded
symbols 〈ej〉 and 〈ai〉.

U15,2 u3 u5 u14 u15

c bRu1 cLu3 cRu14

b cLu5 cRu15 bRu14

Table 6.2.17: Cycle 3 of U15,2.

Halting for U15,2. If the encoded halt symbol 〈eh〉 = (cb)8hq+2 is the
leftmost symbol in the encoded dataword then this is encoded via Defini-
tion 6.2.1 as follows:

u1u1u1, bb cc〈P (eh−1, aq)〉 . . . 〈P (a1)〉(cb)
3(cc)∗bc (cb)8hq+2bb(〈A〉bb)∗cc c . . .

The computation continues as before until U15,2 enters Cycle 2 and scans
left in u7, u8, and u9. This scan ends with the following configuration:

⊢∗ u10u10u10, bb bc〈P (eh−1, aq)〉
′ . . . 〈P (a1)〉

′(bb)3(bc)∗(bc)8hq+2bb(〈A〉bb)∗cb c . . .

In the configuration above, 〈P 〉′ denotes the word in which each cc and cb
subword in 〈P 〉 is changed to the subword bc and bb, respectively. There is
no transition rule in Table 6.2.14 for the case ‘when in u10 read c’ hence the
computation halts.

6.3 Discussion

We noted in the introduction to this chapter that 39 state-symbol pairs
remain open, as can be seen in Figure 6.1.1. It is not known which pairs
have a decidable halting problem and which pairs contain standard universal
Turing machines.

Following Minsky’s [Min62a] 7-state, 4 symbol universal machine all of
the smallest universal Turing machines (including our bi-tag simulators)

6 Four small universal machines 106

have used a similar algorithm. Since Rogozhin [Rog79, Rog82] established
the universal curve there have been incremental reductions in the size of
many of his machines. However the smallest of Rogozhin’s machines, the
6-symbol machine, has not been improved upon since it was first presented
almost 30 years ago. In order to significantly reduce the space between the
decidable halting problem curve and the universality curve we suspect that
a radically new approach must be taken. Below we give three methods to
aid in the search for smaller universal Turing machines.

The first approach is to look for some universal systems other that 2-tag
or bi-tag systems that would require less instructions to simulate. Cyclic
tag systems (see Chapter 4) may be used to give smaller machines. However
the operation of cyclic tag systems is similar to that of tag systems so this
may not give much of an improvement. Perhaps a simple universal cellular
automaton could be simulated. The cellular automaton Rule 110 has given
rise to very small weakly universal Turing machines (see Chapter 7). Perhaps
a sufficiently simple universal cellular automaton could be found that allows
us to construct small Turing machines that are universal, rather than only
weakly universal.

Another approach is to simplify some existing universal model in order to
make it easier to simulate. As an interesting example we will briefly consider
small semi-weak machines. Watanabe [Wat61] gave a small semi-weakly uni-
versal Turing machine with 6 states and 5 symbols that simulates Turing
machines directly. Later, Watanabe [Wat72] gave a small semi-weakly uni-
versal Turing machine with 5 states and 4 symbols that simulates restricted
Turing machines. Watanabe noted that Turing machines with a binary
{0, 1} tape alphabet where the tape head always moves right on a 1 and left
on a 0 are universal. Because of this restriction, Watanabe’s encoded table
of behaviour for each Turing machine had no need to include information
about the direction of movement of the tape head. This in turn simplified
the problem of simulating Turing machines.

A third approach is to find an encoding that allows many different oper-
ations to be carried out by the same group of instructions. In Chapter 3 we
gave small universal Turing machines that simulate Turing machine directly.
The encoding used by these machines allowed each set of transition rules to
serve more than one purpose. A single set of transition rules reads both
the encoded current state and the encoded read symbol. Another set of
transition rules, prints the encoded write symbol, moves the simulated tape
head, and establishes the new encoded current state. Combining steps in
this way has reduced the number of transition rules needed by our universal
machines in Chapter 3.

The number of state-symbol pairs that remain open could also be reduced
by searching for decidability results. Decidability results provide useful lower
bounds for small universal Turing machines. To date, there has been no
improvement on Pavlotskaya’s [Pav78] 1978 proof that the halting problem

6 Four small universal machines 107

is decidable for 3-state, 2-symbol machines. Pavlotskaya’s proof is quite
long and complex and improving on this result may well be difficult. As the
state-symbol product increases, the number of possible machines increases
exponentially. Thus it seems that a new approach needs to be taken. To find
new lower bounds one possible method is to prove that some non-universal
system simulates all of the Turing machines for a given state-symbol pair.

7

Small weakly universal Turing

machines

7.1 Introduction

In this chapter we present small universal Turing machines with state-symbol
pairs of (6, 2), (3, 3) and (2, 4). These machines are weakly universal, which
means that they have an infinitely repeated word to the left of their input
and another to the right. They simulate Rule 110 and are currently the
smallest known weakly universal Turing machines.

We recall that, beginning in the early sixties Minsky and Watanabe en-
gaged in a vigorous competition to see who could come up with the smallest
universal Turing machine [Min60a, Min62a, Wat60, Wat61, Wat72]. In 1961
Watanabe [Wat61] gave a 6-state, 5-symbol universal Turing machine, the
first weakly universal machine. In 1962, Minsky [Min62a] found a small
7-state, 4-symbol universal Turing machine. Not to be out-done, Watan-
abe improved on his earlier machine to give 5-state, 4-symbol and 7-state,
3-symbol weakly universal machines [Wat72, Noz69]. Some of the earliest
small universal machines are given in Table 1.1.1.

The 7-state universal Turing machine of Minsky has received much at-
tention. Minsky’s machine simulates Turing machines via 2-tag systems,
which were proved universal by Cocke and Minsky [CM64]. The technique
of simulating 2-tag systems, pioneered by Minsky, was extended by Ro-
gozhin [Rog82] to give the (then) smallest known universal Turing machines
for a number of state-symbol pairs. These 2-tag simulators were subse-
quently reduced in size by Rogozhin [Rog96], Kudlek and Rogozhin [KR02],
and Baiocchi [Bai01]. In Chapter 6 we gave small universal machines that
simulate Turing machines via a new variant of tag systems called bi-tag sys-
tems. In Figure 7.1.1 each of the smallest 2-tag simulators are plotted as
hollow circles and each of the smallest bi-tag simulators are plotted as solid
triangles. These (standard) machines induce a universal curve.

The small weak machines of Watanabe have received little attention. In
particular the 5-state and 7-state machines seem little known and are largely
ignored in the literature. It is worth noting that unlike other weak Turing
machines the weak machines of Watanabe are proved universal using the

108

7 Small weakly universal machines 109

technique of direct simulation of Turing machines. His machines are the
most time-efficient of the small weak machines: Watanabe’s machines are
the smallest weak machines that simulate with a O(t2) time overhead.

We often refer to Watanabe’s machines as being semi-weak. Semi-weak
machines are a restriction of weak machines: they have an infinitely repeated
word to one side of their input, and on the other side they have a (standard)
infinitely repeated blank symbol. Recently, Woods and Neary [WN07b,
WNb] have given semi-weakly universal machines that simulate cyclic tag
systems. These machines have state-symbol pairs of (2, 14), (3, 7) and (4, 5).
In Figure 7.1.1 the semi-weakly universal machines of Watanabe are plotted
as hollow diamonds and those of Woods and Neary are plotted as solid
diamonds.

Cook and Eppstein [Coo04], and Wolfram [Wol02] recently gave weakly
universal Turing machines, smaller than Watanabe’s semi-weak machines,
that simulate the universal cellular automata Rule 110. These machines
have state-symbol pairs of (7, 2), (4, 3), (3, 4), (2, 5) and are plotted as hollow
squares in Figure 7.1.1. (Note that David Eppstein constructed the (7, 2)
machine to be found in [Coo04].)

The weakly universal Turing machines we give here simulate (single tape,
deterministic) Turing machines in time O(t4 log2 t), via Rule 110. These ma-
chines are plotted as solid squares in Figure 7.1.1 and induce a weakly uni-
versal curve. The weak machines we present in this chapter have previously
appeared in [NW07b].

Over the years, small universal programs were given for a number of
variants on the standard model. By generalising the model we often find
smaller universal programs. Weakness has not been the only generalisation
on the standard model in the search for small universal Turing machines.
Other generalisations on the standard model are to be found in Section 1.1.3.

7.2 Rule 110

Rule 110 is a very simple (2-state, nearest neighbour, one-dimensional) cel-
lular automaton. It is composed of a sequence of cells . . . p−1p0p1 . . . where
each cell has a binary state pi ∈ {0, 1}. At timestep s + 1, the value
pi,s+1 = F (pi−1,s, pi,s, pi+1,s) of the cell at position i is given by the syn-
chronous local update function F

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 0

(7.2.1)

Rule 110 was proven universal by Cook [Coo04] (a sketch of Cook’s proof
also appears in [Wol02]). In Chapter 4 we proved that Rule 110 simulates

7 Small weakly universal machines 110

bc : universal, 2-tag simulation, O(t4 log2 t)

u : universal, bi-tag simulation, O(t6)

ld : semi-weakly universal, direct simulation, O(t2)

l : semi-weakly universal, cyclic tag simulation, O(t4 log2 t)

rs : weakly universal, Rule 110 simulation, O(t4 log2 t)

r : weakly universal, Rule 110 simulation, O(t4 log2 t)

: universal curve

: weakly universal curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

states

symbols u

u

uu

u

r

r

r

bc

bc

bc

bc

bc

bc

bc

l

l

l

ld

ld

rs

rs

rs

rs

Figure 7.1.1: State-symbol plot of small weakly universal Turing machines.
Each new weakly universal Turing machines is plotted as a solid square.

Turing machines efficiently in polynomial time. Rule 110 simulates cyclic
tag systems in linear time. Thus from Theorem 4.3.2 Rule 110 simulates
Turing machines in O(t2 log t) time. The weak machines in this chapter,
and in [Coo04, Wol02], simulate Rule 110 with a quadratic polynomial in-
crease in time and hence simulate Turing machines in time O(t4 log2 t). It
is worth noting that the prediction problem [GHR95] for these machines is
thus P-complete, and this is also the case when we restrict to bounded initial
conditions.

7.3 Three small weakly universal Turing machines

The following observation is one of the reasons for the improvement in size
over previous [Coo04, Wol02] weak machines, and gives some insight into
the simulation algorithm that we use. Notice from Equation (7.2.1) that
the value of the update function F , with the exception of F (0, 1, 1) and
F (1, 1, 1), may be determined using only the rightmost two states. Each

7 Small weakly universal machines 111

c0

c1

c2

c3
...

. . . -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 . . .

Figure 7.2.1: Seven consecutive timesteps of Rule 110. These seven
timesteps are taken from the background ether that is used in the
proof [Coo04] of universality of Rule 110. Each black or each white square
represents, a Rule 110 cell containing, state 1 or 0 respectively. Each cell is
identified by the index given above it. To the left of each row of cells there
is a configuration label that identifies that row.

of our universal Turing machines exploit this fact as follows. The machines
scan from right to left, and in six of the eight cases they need only remember
the cell immediately to the right of the current cell i in order to compute the
update for i. Thus for these six cases we need only store a single cell value,
rather than two values. The remaining two cases are simulated as follows.
If two consecutive encoded states with value 1 are read, it is assumed that
there is another encoded 1 to the left and the update F (1, 1, 1) = 0 is
simulated. If our assumption proves false (we instead read an encoded 0),
then our machine returns to the wrongly updated cell and simulates the
update F (0, 1, 1) = 1.

Before giving our three small Rule 110 simulators, we give some further
background explanation. Rule 110 simulates Turing machines via cyclic tag
systems. A Rule 110 instance that simulates a cyclic tag system computa-
tion is of the following form (for more details see [Coo04]). The input to the
cyclic tag system is encoded in a contiguous finite number of Rule 110 cells.
On the left of the input a fixed constant word (representing the ‘ossifiers’) is
repeated infinitely many times. On the right, another fixed constant word
(representing the cyclic tag system program/appendants, and the ‘leaders’)
is repeated infinitely many times. Both of these repeated words are inde-
pendent of the input.

Our weakly universal machines operate by traversing a finite amount
of the tape from right to left and then from left to right. This simulates a
single timestep of Rule 110 over a finite part of the encoded infinite Rule 110
instance. With each simulated timestep the length of a traversal increases.
To ensure that each traversal is of finite length, the left blank word l and
the right blank word r of each of our weak machines must have a special
form. These words contain special subwords or symbols that terminate

7 Small weakly universal machines 112

each traversal, causing the tape head to turn. When the head is turning
it overwrites any symbols that caused a turn. Thus the number of cells
that are being updated increases monotonically over time. This technique
simulates Rule 110 properly if the initial condition is set up so that within
each repeated blank word, the subword between each successive turn point
is shifted one timestep forward in time.

In the sequel we describe the computation of our three machines by
showing a simulation of the update on the ether in Figure 7.2.1. In the next
paragraph below, we outline why this example is in fact general enough to
prove universality. First, we must define blank words that are suitable for
this example. The left blank word l, on the Turing machine tape, encodes
the Rule 110 sequence 0001. In the initial configuration as we move left
each subsequent sequence 0001 is one timestep further ahead. To see this
note from Figure 7.2.1 that 0001 occupies, cells −7 to −4 in configuration
c1, cells −11 to −8 in c2, cells −15 to −12 in c3, etc. Similarly, the right
blank word r encodes the Rule 110 sequence 110011. Looking at the initial
configuration, as we move right from cell 0, in the first blank word the first
four cells 1100 are shifted two timesteps ahead, and the next two cells 11
are shifted a further one timestep. To see this note from Figure 7.2.1 that
1100 occupies cells 1 to 4 in c2 and 11 occupies cells 5 and 6 in c3. In each
subsequent sequence the first four cells 1100 are shifted only one timestep
ahead and the last two cells 11 are shifted one further timestep. In each row
the ether in Figure 7.2.1 repeats every 14 cells and if the number of timesteps
s between two rows is s ≡ 0 mod 7 then the two rows are identical. The
periodic nature of the ether, in both time and space, allows us to construct
such blank words.

It should be noted that the machines we present here, and those in [Coo04],
require suitable blank words to simulate a Rule 110 instance directly. If no
suitable blank words can be found (i.e. if it is not possible to construct the
specific subwords that we use to terminate traversals in the encoding) then
it may be the case that the particular instance can not be simulated directly.
However, in the sequel our machines simulate the background ether that is
used in the universality proof of Rule 110 [Coo04]. The gliders used by
Cook [Coo04] that move through this ether are periodic in time and space.
Thus, we can construct blank words that included these gliders and place
the subwords that terminate traversals in the ether. By this reasoning, our
example is sufficiently general to prove that our machines simulate Turing
machines via Rule 110 and we do not give a full (and possibly tedious)
proof of correctness. For U3,3 we explicitly simulate three updates from
Figure 7.2.1, which is general enough so that an update [Equation (7.2.1)]
on each of the eight possible three state combinations is simulated. We
give shorter examples for the machines U2,4 and U6,2 as they use the same
simulation algorithm as U3,3.

The machines we present here do not halt. Cook [Coo04] shows how a

7 Small weakly universal machines 113

special glider may be produced during the simulation of a Turing machine
by Rule 110. This glider may be used to simulate halting as the encoding
can be such that it is generated by Rule 110 if and only if the simulated
machine halts. The glider would be encoded on the tape of our machines as
a unique, constant word.

7.3.1 U3,3

We begin by describing an initial configuration of U3,3. To the left of, and
including, the tape head position, the Rule 110 state 0 is encoded by 0, and
the Rule 110 state 1 is encoded by either 1 or b. The word 1b0 is used to
terminate a left traversal. (Note an exception: the 1 in the subword 1b0
encodes the Rule 110 state 0.) To the right of the tape head position, the
Rule 110 state 0 is encoded by 1, and the Rule 110 state 1 is encoded by 0
or b. The tape symbol 0 is used to terminate a right traversal. The left and
right blank words, described in paragraph 4 of Section 7.3, are encoded as
0 0 1 b and 0 b 1 1 0 b respectively.

u1 u2 u3

0 1Lu1 0Ru1 bLu1

1 bLu2 1Lu2 0Ru3

b bLu3 1Ru3

Table 7.3.1: Table of behaviour for U3,3.

We give an example of U3,3 simulating the three successive Rule 110
timesteps c0 ⊢ c1 ⊢ c2 ⊢ c3 given in Figure 7.2.1. In the below configurations
the current state of U3,3 is highlighted in bold, to the left of its tape contents.
The tape head position of U3,3 is given by an underline and the start state is
u1. The configuration immediately below encodes c0 from Figure 7.2.1 with
the tape head over cell index 0.

u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 0 b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 0 0 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢2 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 1 b 1 1 b b 0 b 1 1 0 b 0 b 1 1 0 b . . .

When the tape head reads the subword 1b0 the left traversal is complete

7 Small weakly universal machines 114

and the right traversal begins.

⊢6 u3u3u3, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 1 0 b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0001 0011 b b 1 1 0 b 0 b 1 1 0 b . . .

Immediately after the tape head reads a 0, during a right traversal, the
simulation of timestep c0 ⊢ c1 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −7 to 0 of configuration c1 in
Figure 7.2.1. We continue our simulation to give timestep c1 ⊢ c2.

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢ u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 0 b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 0 1 0 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 1 b 0 0 0 b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u1u1u1, . . . 0 0 1 b 0 0 1 b 0 0 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢3 u3u3u3, . . . 0 0 1 b 0 0 1 b 1 1 b b 1 b b b b b 1 1 0 b 0 b 1 1 0 b . . .

⊢15 u1u1u1, . . . 0 0 1 b 0001 0011 0111 1100 b b 0 b 1 1 0 b . . .

The simulation of timestep c1 ⊢ c2 is complete. To see this, compare the
part of the Turing machine tape in bold with cells −11 to 4 of configuration
c2 in Figure 7.2.1. We continue our simulation to give timestep c2 ⊢ c3.

⊢3 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢4 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 1 0 1 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢5 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 0 1 1 b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 0 1 0 0 1 b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢5 u1u1u1, . . . 0 0 1 b 0 0 0 1 0 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢2 u2u2u2, . . . 0 0 1 b 0 0 0 b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢6 u3u3u3, . . . 0 0 1 b 1 1 b b 1 b b b b b 1 1 1 b 1 1 b b 0 b 1 1 0 b . . .

⊢21 u1u1u1, . . . 0001 0011 0111 1100 010011 b b 1 1 0 b . . .

The simulation of timestep c2 ⊢ c3 is complete. To see this, compare the
part of the Turing machine tape in bold with cells −15 to 6 of configuration
c3 in Figure 7.2.1.

7.3.2 U2,4

We begin by describing an initial configuration of U2,4. To the left of, and
including, the tape head position, the Rule 110 state 0 is encoded by either 0

7 Small weakly universal machines 115

or 0/ and the Rule 110 state 1 is encoded by either 1 or 1/ . The word 0/ 1 is
used to terminate a left traversal. To the right of the tape head position,
the Rule 110 state 0 is encoded by 0/ and the Rule 110 state 1 is encoded
by 1/ or 0. The tape symbol 0 is used to terminate a right traversal. The
left and right blank words, from paragraph 4 of Section 7.3, are encoded as
0 0 0/ 1 and 0 1/ 0/ 0/ 0 1/ respectively.

u1 u2

0 0/Lu1 1/Ru1

1 1/Lu2 0/Lu2

0/ 1/Lu1 0Ru2

1/ 1/Lu1 1Ru2

Table 7.3.2: Table of behaviour for U2,4.

By way of example we give U2,4 simulating the two successive Rule 110
timesteps c0 ⊢ c1 ⊢ c2 given in Figure 7.2.1. The configuration immediately
below encodes c0 from Figure 7.2.1 with the tape head over cell index 0.

u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢6 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0/ 1/ 0/ 0/ 1/ 1/ 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

When the tape head reads the subword 0/ 1 the left traversal is complete and
the right traversal begins.

⊢6 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 0 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0001 0011 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

Immediately after the tape head reads a 0, during a right traversal, the
simulation of timestep c0 ⊢ c1 is complete. To see this, compare the part
of the Turing machine tape in bold with cells −7 to 0 of configuration c1 in
Figure 7.2.1. We continue our simulation to give timestep c1 ⊢ c2.

⊢2 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 1 1 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢2 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 0 0/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1 0 1/ 0/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢4 u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1 0 0 0 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢5 u1u1u1, . . . 0 0 0/ 1 0 0 0/ 1 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢ u2u2u2, . . . 0 0 0/ 1 0 0 0/ 1/ 0/ 0/ 1/ 1/ 0/ 1/ 1/ 1/ 1/ 1/ 0/ 0/ 0 1/ 0 1/ 0/ 0/ 0 1/ . . .

⊢15 u1u1u1, . . . 0 0 0/ 1 0001 0011 0111 1100 1/ 1/ 0 1/ 0/ 0/ 0 1/ . . .

7 Small weakly universal machines 116

The simulation of timestep c1 ⊢ c2 is complete. To see this, compare the
part of the Turing machine tape in bold with cells −11 to 4 of configuration
c2 in Figure 7.2.1.

7.3.3 U6,2

We begin by describing an initial configuration of U6,2. To the left of, and
including, the tape head position, the Rule 110 state 0 is encoded by the
word 00 and the Rule 110 state 1 is encoded by the word 11. The word
010100 is used to terminate a left traversal and encodes the sequence of
Rule 110 states 010. To the right of the tape head position the Rule 110
state 0 is encoded by the word 00 and the Rule 110 state 1 is encoded by
either of the words 01 or 10. The word 10 is used to terminate a right
traversal. The left and right blank words, from paragraph 4 of Section 7.3,
are encoded as 0 0 0 0 0 1 0 1 and 1 0 0 1 0 0 0 0 1 0 0 1 respectively.

u1 u2 u3 u4 u5 u6

0 0Lu1 0Lu6 0Ru2 1Ru5 1Lu4 1Lu1

1 1Lu2 0Lu3 1Lu3 0Ru6 1Ru4 0Ru4

Table 7.3.3: Table of behaviour for U6,2.

To illustrate the operation of U6,2 we simulate the Rule 110 timestep
c0 ⊢ c1 given in Figure 7.2.1. The configuration immediately below encodes
c0 from Figure 7.2.1 with the tape head over cell index 0.

u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u3u3u3, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢5 u1u1u1, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u2u2u2, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

When the tape head reads the subword 1 0 1 0 0 the left traversal is complete
and the right traversal begins.

7 Small weakly universal machines 117

⊢ u5u5u5, . . . 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u5u5u5, . . . 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢4 u4u4u4, . . . 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u5u5u5, . . . 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u4u4u4, . . . 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢2 u4u4u4, . . . 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u6u6u6, . . . 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 . . .

⊢ u1u1u1, . . .00000011 00001111 0 1 0 1 0 0 0 0 1 0 0 1 . . .

Immediately after the tape head reads a 10, during a right traversal, the
simulation of timestep c0 ⊢ c1 is complete. To see this, compare the part of
the Turing machine tape in bold (recall 0 and 1 are encoded as 00 and 11
respectively) with cells −7 to 0 of configuration c1 in Figure 7.2.1.

7.4 Discussion

The pursuit to find the smallest possible universal Turing machine must
also involve the search for lower bounds, finding the largest set of Turing
machines that are in some sense non-universal. One approach is to settle
the decidability of the halting problem, but this approach is not suitable for
the non-halting machines we have presented.

It is known that the halting problem is decidable for (standard) Tur-
ing machines with the following state-symbol pairs (2, 2) [Kud96, Pav73],
(3, 2) [Pav78], (2, 3) (claimed by Pavlotskaya [Pav73]), (1, n) [Her68c] and
(n, 1) (trivial), where n > 1. Then, these decidability results imply that a
universal Turing machine, that simulates any Turing machine M and halts
if and only if M halts, is not possible for these state-symbol pairs. Hence
these results give lower bounds on the size of universal machines of this
type. While it is trivial to prove that the halting problem is decidable for
(possibly halting) weak machines with state-symbol pairs of the form (n, 1),
it is not known whether the above decidability results generalise to (possibly
halting) weak Turing machines.

The weakly universal machines presented in this chapter, and those
in [Coo04], do not halt. Hence the non-universality results discussed in the
previous paragraph would have to be generalised to non-halting weak ma-
chines to give lower bounds. This may prove difficult for two reasons. The

7 Small weakly universal machines 118

first issue is that, intuitively speaking, weakness gives quite an advantage.
For instance, the program of a universal machine may be encoded in one of
the infinitely repeated blank words of the weak machine. The second issue
is related to the problem of defining a computation. Informally, a computa-
tion could be defined as a sequence of configurations that ends with a special
terminal configuration. For non-halting machines, there are many ways to
define a terminal configuration. Given a definition of terminal configuration
we may prove that the terminal configuration problem (will a machine ever
enter a terminal configuration?) is decidable for a machine or set of ma-
chines. However this result may not hold as a proof of non-universality if
we subsequently alter our definition of terminal configuration.

It is trivial that no weakly universal Turing machines exist for the state-
symbol pair (n, 1) even when we consider machines with no halting condition.
We also believe that such relevant decidability results for the state-symbol
pair (2, 2) may also be given. If this is true, then the problem for 2-state
and 3-state weakly universal machines only remains open for (2, 3) and (3, 2)
respectively.

Margenstern [Mar00] and Baiocchi [Bai98] constructed small machines
that simulate iterations of the Collatz (3x + 1) problem. The size of the
smallest known weakly universal machines are quite close to the possible
minimum size for weakly universal machines. Implementing the Collatz
problem on weak machines could be an interesting way of exploring the
little space remaining between these machines and the state-symbol pairs
where weak universality is not possible.

8

Conclusion

Our results reduce the size and improve the time efficiency of many of the
simplest known models of computation.

We presented new polynomial time (standard) universal Turing machines
with state-symbol pairs of (5, 5), (6, 4), (9, 3) and (15, 2). These machines
simulate our new variant of tag system, the bi-tag system, and are the
smallest known universal Turing machines with 5, 4, 3 and 2-symbols re-
spectively. Our 5-symbol machine uses the same number of instructions
(22) as the smallest known universal Turing machine (Rogozhin’s 6-symbol
machine [Rog96]).

We have shown that 2-tag systems efficiently simulate Turing machines.
As a corollary, we find that the small universal Turing machines of Rogozhin,
Minsky and others simulate Turing machines in polynomial time. This is an
exponential improvement on the previously known simulation time overhead
and improves on a forty-year old result. We also introduced a new form of tag
system which we call a bi-tag system. We prove bi-tag systems are universal
by showing they efficiently simulate Turing machines in polynomial time.

We have shown that cyclic tag systems are polynomial simulators of
Turing machines. This result is used to prove that Rule 110, one of the
most intuitively simple cellular automata, is P-complete to predict. In fact,
we proved that Rule 110 is a polynomial simulator of Turing machines. As
a corollary of this result, we find that the smallest weakly universal Turing
machines simulate Turing machines efficiently in polynomial time. All of
these results represent an exponential improvement.

We have given the smallest efficient universal Turing machines that sim-
ulate Turing machines in O(t2) time. They are also the smallest known
machines where direct simulation of Turing machines is the technique used
to establish their universality. This result also gives a new algorithm for
small universal Turing machines.

We presented the smallest known weakly universal Turing machines.
These machines have state-symbol pairs of (6, 2), (3, 3) and (2, 4). The
3-state and 2-state machines are very close to the minimum possible size for
weakly universal machines with 3 and 2 states, respectively.

We have given new results for many different simple universal models
including Turing machines, weak Turing machines, tag systems and cellular

119

8 Conclusion 120

automata. These models have applications for a variety of other results. For
instance the results surveyed in Section 5.3.1 rely on simulations of 2-tag
systems. Many of these results also rely on simulation of small universal
Turing machines. It is possible that the (much smaller) weakly universal
machines from Chapter 7 may also be of use in some of these simulations to
give further improvements. In particular our weak machines may be used
with the results of Lindgren and Nordahl [LN90] to give simple universal
cellular automata that use periodic backgrounds. We have already seen
an application of Rule 110 in constructing small efficient weakly universal
machines in Chapter 7 and similar applications of cyclic tag systems in
constructing efficient semi-weakly universal machines in [WN07b, WNb].
More recently, our new 4-symbol universal Turing machine from Chapter 6
was used to give a small universal spiking neural P system [Nea08a]. No
doubt, other interesting applications are out there waiting to be discovered.

8.1 Future work

8.1.1 Standard Turing machines and program size

Perhaps one of the most obvious aims is to further reduce the size of the
smallest (standard) universal Turing machines. As noted in Section 6.3 we
suspect that some radically new techniques are needed to significantly reduce
the size of the smallest known machines.

The search for the smallest universal Turing machine goes hand-in-hand
with the search for decidability results. Decidability results provide useful
lower bounds for small universal Turing machines. In Section 6.1 we saw that
the universality/non-universality question still remains open for 39 state-
symbol pairs. There has been no improvement on Pavlotskaya’s [Pav78]
result that the halting problem is decidable for 3-state, 2-symbol machines,
which was given in 1978. Pavlotskaya’s proof is quite long and complex.
As the state-symbol product increases, the number of possible machines
increases exponentially, thus it seems that a new approach needs to be taken.
To find new lower bounds one possible method is to prove that some non-
universal system simulates all of the standard Turing machines for a given
state-symbol pair.

8.1.2 Weak Turing machines and program size

It would be interesting to give decidability results (lower bounds) for non-
halting weak Turing machines. To date, no relevant decidability results have
been given for such machines. Such results would provide lower bounds
relevant to our weakly universal machines in Chapter 7. We discussed the
problem of giving these lower bounds in Section 7.4. It is trivial that no
weakly universal Turing machine exists for the state-symbol pair (n, 1) even

8 Conclusion 121

when we consider machines with no halting condition. We also conjecture
that relevant decidability results for the state-symbol pair (2, 2) may also be
given. If this is true, the problem for 2-state and 3-state weakly universal
machines only remains open for (2, 3) and (3, 2) respectively.

Margenstern [Mar00] and Baiocchi [Bai98] constructed small machines
that simulate iterations of the Collatz (3x + 1) problem. It would be in-
teresting to construct weak machines to simulate this problem. The size of
the smallest known weakly universal machines are quite close to the possi-
ble minimum size for weakly universal machines. Implementing the Collatz
problem on weak machines could be an interesting way of exploring the little
space remaining between these machines and the state-symbol pairs where
weak universality is not possible.

8.1.3 Time efficiency of simple universal models

It would be interesting to study the time complexity of small multitape Tur-
ing machines. For instance, what about simple universal Turing machines
with more than one tape that simulate Turing machines in linear time? We
noted in Section 3.6 that the algorithm we suggested for linear time uni-
versal Turing machines may require many transition rules. Constructing a
small 2-tape linear time simulator could perhaps be more easily achieved:
one tape could contain the simulated tape contents and tape head position
and the other tape could contain the encoded table of behaviour to search
for the next instruction. This would avoid scanning back and forth through
the tape contents to simulate a transition rule.

It would also be interesting to see if the time efficiency of 2-tag systems,
bi-tag systems and cyclic tag systems may be improved further.

8.1.4 The not halting problem

In Section 2.2 we discuss a number of different definitions of universal Turing
machine. A number of authors have given definitions for universal Turing
machines that do not require the machine to halt. Our small weakly univer-
sal Turing machines in Chapter 7 are non-halting. What about proving rel-
evant non-universality results? Such non-universality results are not achiev-
able by proving the halting problem decidable. Before we attempt such an
endeavor we must agree on the assumptions for the definition of universal
Turing machine. We allow the following generalisation of Definition 2.1.7,
instead of the computation ending with a single terminal configuration, the
computation ends with a finite configuration sequence called the terminal
configuration sequence. The output of the simulated Turing machine is re-
trieved by applying the recursive decoding function to this sequence. There
are many ways to define a terminal configuration sequence. Some examples
of possible terminal configuration sequences are:

8 Conclusion 122

• The configurations containing a given sequence of states.

• A sequence containing two identical configurations.

• A single configuration containing a constant word.

Given a definition of a terminal configuration sequence we may prove that
the terminal sequence problem (will a machine ever execute a terminal con-
figuration sequence) is decidable. This gives non-universal lower bounds that
are relevant to universal machines that end their computation with such a
sequence. However, this result may not hold as a proof of non-universality if
we subsequently alter our definition of terminal configuration sequence. One
more general approach is to prove that the terminal sequence problem for all
possible terminal sequences, of a machine or set of machines, is decidable.

Definition 2.1.7, augmented with the notion of terminal configuration
sequences, is a generalisation on the definitions of Davis and Priese, which
were discussed in Section 2.2. We propose this definition as an attempt to
include as many reasonable models as possible.

8.1.5 Some final questions

In Figure 1.3.1 the smallest (standard) universal machines are currently not
symmetric about the line where states equals symbols. Are the smallest pos-
sible universal Turing machines symmetric about the states equals symbols
line?

Following the work in this thesis, all of the smallest known weakly, semi-
weakly, and standard universal Turing machines now simulate Turing ma-
chines efficiently in polynomial time. Are all of the smallest possible univer-
sal Turing machines efficient polynomial time simulators?

Currently the smallest weakly universal Turing machines are significantly
smaller than the smallest standard universal Turing machines. The 3-state,
3-symbol weakly universal machine, given in Chapter 7, sits in the armchair
that is the current decidability curve for standard machines. Is this weakly
universal machine smaller than the smallest possible standard universal Tur-
ing machine?

Finally, there is no need to restate Shannon’s famous question here!

Notation

M single tape deterministic Turing machine

qx an internal state of M

t the running time of M

U a universal Turing machine

Um,n a universal Turing machine with m state and n symbols

ux an internal state of Um,n

⊢ a single computation step

⊢s a sequence of s computation steps

⊢∗ a sequence of > 0 computation steps

N non-negative integers

Σ∗ set of all words of length > 0 over alphabet Σ = {σ1, σ1, . . . , σn}

w a word over some alphabet Σ

|w| the length of the word w

ǫ the empty word, |ǫ| = 0

ω cardinality of N

〈X〉 the encoding of object X as a word

A−B The set containing all the elements of set A that are not elements of set B

A×B The set of ordered pairs (a, b) such that a ∈ A and b ∈ B

123

Bibliography

[Aar02] Scott Aaronson. Book review: A new kind of science. Quantum
Information and Computation, 2(5):410–423, August 2002.

[AC87] Jürgen Albert and Karel Culik II. A simple universal cellular
automaton and its one-way and totalistic version. Complex
Systems, 1(1):1–16, 1987.

[AF67] St̊al Aanderaa and Patrick C. Fischer. The solvability of the
halting problem for 2-state Post machines. Journal of the
Association for Computing Machinery (ACM), 14(4):677–682,
1967.

[AFR06] Artiom Alhazov, Rudolf Freund, and Yurii Rogozhin. Com-
putational power of symport/antiport: history, advances and
open problems. In Rudolf Freund, Georg Lojka, Marion Os-
wald, and Gheorghe Păun, editors, Sixth international Work-
shop on Membrane Computing (2005), volume 3850 of LNCS,
pages 1–30, Vienna, July 2006. Springer.

[AKR02] Artiom Alhazov, Manfred Kudlek, and Yurii Rogozhin. Nine
universal circular Post machines. Computer Science Journal
of Moldova, 10(3):247–262, 2002.

[AR06] Artiom Alhazov and Yurii Rogozhin. Towards a characteri-
zation of P systems with minimal symport/antiport and two
membranes. In Hendrik Jan Hoogenboom, Gheorghe Păun,
Grzegorz Rozenberg, and Arto Salomaa, editors, Seventh in-
ternational Workshop on Membrane Computing, volume 4361
of LNCS, pages 135–153, Leiden, The Netherlands, July 2006.
Springer.

[Bai98] Claudio Baiocchi. 3n+1, UTM e tag-system. Technical Report
Pubblicazione 98/38, Dipartimento di Matematico, Università
di Roma, 1998. (In Italian).

124

BIBLIOGRAPHY 125

[Bai01] Claudio Baiocchi. Three small universal Turing machines.
In Maurice Margenstern and Yurii Rogozhin, editors, Ma-
chines, Computations, and Universality (MCU), volume 2055
of LNCS, pages 1–10, Chişinău, Moldova, May 2001. Springer.

[Ban70] Edwin R. Banks. Universality in cellular automata. In Confer-
ence Record of the Eleventh Annual Symposium on Switching
an Automata Theory (FOCS), pages 194–215, Santa Monica,
California, 1970. IEEE.

[BCG82] Elwyn Berlekamp, John Conway, and Richard Guy. Winning
ways for your mathematical plays, vol 2: Games in particular.
Academic Press, New York, 1982.

[Ben73] Charles H. Bennett. Logical reversibility of computation. IBM
Journal of Research and Development, 17(6):525–532, Novem-
ber 1973.

[Bra83] Allen Brady. The determination of the value of Rado’s non-
computable function Σ(k) for four-state Turing machines.
Mathematics of Computation, 40(162):647–665, April 1983.

[CM63] John Cocke and Marvin Minsky. Universality of tag systems
with P = 2, April 1963. AIM-52, A.I. memo 52, Computer Sci-
ence and Artificial Intelligence Laboratory, MIT, Cambridge,
Massachusetts.

[CM64] John Cocke and Marvin Minsky. Universality of tag systems
with P = 2. Journal of the Association for Computing Ma-
chinery (ACM), 11(1):15–20, 1964.

[Cod68] Edgar F. Codd. Cellular Automata. Academic Press, New
York, 1968.

[Coo66] Stephen Cook. The solvability of the derivability problem for
one-normal systems. Journal of the Association for Computing
Machinery (ACM), 13(2):233–225, 1966.

[Coo04] Matthew Cook. Universality in elementary cellular automata.
Complex Systems, 15(1):1–40, 2004.

[CVMVV07] Erzsébet Csuhaj-Varjú, Maurice Margenstern, György Vaszil,
and Sergey Verlan. On small universal antiport P systems.
Theoretical Computer Science, 372(2-3):152–164, 2007.

[Dav56] Martin Davis. A note on universal Turing machines. Automata
Studies, Annals of Mathematics Studies, 34:167–175, 1956.

BIBLIOGRAPHY 126

[Dav57] Martin Davis. The definition of universal Turing machine.
Proceedings of the American Mathematical Society, 8(6):1125–
1126, dec 1957.

[Dav58] Martin Davis. Computability and Unsolvability. McGraw-Hill,
New York, 1958.

[Dav65] Martin Davis. The undecidable: basic papers on undecidable
propositions, unsolvable problems and computable functions.
Raven Press, New York, 1965.

[De Mol07] Liesbeth De Mol. Study of the limits of solvability in tag sys-
tems. In Jérôme Durand-Lose and Maurice Margenstern, ed-
itors, Machines, Computations, and Universality (MCU), vol-
ume 4664 of LNCS, pages 170–181, Orléans, France, Septem-
ber 2007. Springer.

[DK89] Volker Diekert and Manfred Kudlek. Small deterministic Tur-
ing machines. Papers on Automata and Languages, Depart-
ment of Mathematics, Karl Marx University of Economics,
Budapest, 1988-4:77–87, 1989.

[DKB04] Jean-Charles Delvenne, Petr Kurka, and Vincent Blondel.
Computational universality in symbolic dynamical systems. In
Maurice Margenstern, editor, Machines, Computations, and
Universality (MCU), volume 3354 of LNCS, pages 104–115,
Saint Petersburg, Russia, September 2004. Springer.

[Fis65] Patrick C. Fischer. On formalisms for Turing machines.
Journal of the Association for Computing Machinery (ACM),
12(4):570–580, 1965.

[FMKY00] Claudio Ferretti, Giancarlo Mauri, Satoshi Kobayashi, and
Takashi Yokomori. On the universality of Post and splicing
systems. Theoretical Computer Science, 231(2):157–170, Jan-
uary 2000.

[FO06] Rudolf Freund and Marion Oswald. Small universal antiport
P systems and universal multiset grammars. In Carmen Gra-
ciani D́ıaz, Gheorghe Păun, Alvaro Romero-Jiménez, and Fer-
nando Sancho-Caparrini, editors, Fourth Brainstorming Week
on Membrane Computing (Volume II), pages 51–64, Sevilla,
Spain, 2006.

[GHR95] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo.
Limits to parallel computation: P -completeness theory. Ox-
ford University Press, Oxford, 1995.

BIBLIOGRAPHY 127

[Hea87] Tom Head. Formal language theory and DNA: An analysis
of the generative capacity of specific recombinant behaviours.
Bulletin of Mathematical Biology, 49(6):737–759, 1987.

[Her66a] Gabor T Hermann. The halting problem of generalized one
state Turing machines. Master’s thesis, University of Califor-
nia, Berkeley, 1966.

[Her66b] Gabor T Hermann. On the impossibility of a one state univer-
sal Turing machines. Technical report, Electronics Research
Laboratory, University of California, Berkeley, 1966.

[Her68a] Gabor T Hermann. The halting problem of one state Turing
machines with n-dimensional tape. Zeitshrift fur Mathema-
tische Logik-und Grundlagen der Matematik, 14(2):185–191,
1968.

[Her68b] Gabor T Hermann. Simulation of one abstract computing
machine by another. Communications of the Association for
Computing Machinery (ACM), 11(12):802 and 813, 1968.

[Her68c] Gabor T Hermann. The uniform halting problem for gener-
alized one state Turing machines. In Proceedings, Ninth An-
nual Symposium on Switching and Automata Theory (FOCS),
pages 368–372, Schenectady, New York, October 1968. IEEE
Computer Society Press.

[HM03] Fracine Herrmann and Maurice Margenstern. A universal cel-
lular automaton in the hyperbolic plane. Theoretical Computer
Science, 296(2):327–364, 2003.

[HM05] Tero Harju and Maurice Margenstern. Splicing systems for
universal Turing machines. volume 3384 of LNCS, pages 149–
158, Milan, Italy, 2005. Springer, Heiedlberg.

[Hoo63] Philip Hooper. Some small, multitape universal Turing ma-
chines. Technical report, Computation Labortory, Harvard
University, Cambridge, Massachusetts, 1963.

[Hoo69] Philip Hooper. Some small, multitape universal Turing ma-
chines. Information Sciences, 1(2):205–215, 1969.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to au-
tomata theory, languages, and computation. Addison-Wesley
Series in Computer Science. Addison-Wesley, Reading, Mas-
sachusetts, 1979.

BIBLIOGRAPHY 128

[IIM07] Katsunobu Iami, Chuzo Iwanmoto, and Kenichi Morita. A
five-state von Neumann neighbor universal hyperbolic cellular
automaton. Journal of Cellular Automata, 1(4):275–297, 2007.

[Ike58] N Ikeno. A 6-symbol 10-state universal Turing machine. In
Proceedings, Institute of Electrical Communications Tokyo,
1958.

[Ind95] Piotr Indyk. Optimal simulation of automata by neural nets.
In Ernst Mayr and Claude Puech, editors, Twelfth Annual
Symposium on Theoretical Aspects of Computer Science, vol-
ume 900, pages 337–348, 1995.

[IPY06] Mihai Ionescu, Gheorghe Păun, and T Yokomori. Spiking
neural P systems. Fundamenta Informaticae, 71(2-3):279–308,
2006.

[KB77] Hans Kleine-Büning. Über probleme bei homogener Parket-
tierung von Z × Z durch Mealy-automaten bei normierter
verwendung. PhD thesis, Institut für Mathematische Logik,
Münster, 1977.

[KBO77] Hans Kleine-Büning and Thomas Ottmann. Kleine universelle
mehrdimensionale Turingmaschinen. Elektronische Informa-
tionsverarbeitung und Kybernetik, 13(4-5):179–201, 1977.

[KCG94] Pascal Koiran, Michel Cosnard, and Max H. Garzon. Com-
putability with low dimensional dynamical systems. Theoret-
ical Computer Science, 132(1-2):113–128, 1994.

[Kor96] Ivan Korec. Small universal register machines. Theoretical
Computer Science, 168(2):267–301, 1996.

[KR01a] Manfred Kudlek and Yurii Rogozhin. New small universal cir-
cular Post machines. In Rusins Freivalds, editor, Fundamentals
of Computation Theory (FCT), volume 2138 of LNCS, pages
217–227, Riga, Latvia, August 2001. Springer.

[KR01b] Manfred Kudlek and Yurii Rogozhin. Small universal circu-
lar Post machines. Computer Science Journal of Moldova,
9(1):34–52, 2001.

[KR02] Manfred Kudlek and Yurii Rogozhin. A universal Turing ma-
chine with 3 states and 9 symbols. In Werner Kuich, Grze-
gorz Rozenberg, and Arto Salomaa, editors, Developments in
Language Theory (DLT) 2001, volume 2295 of LNCS, pages
311–318, Vienna, May 2002. Springer.

BIBLIOGRAPHY 129

[KR03] Manfred Kudlek and Yurii Rogozhin. Small universal Turing
and circular Post machines. Pure Mathematics and Applica-
tions, 13(1-2):197–210, 2003.

[Kry67] Y Kryukov. Turing machines with two symbols and three
states. Algebra i Logka, 16(3):54–60, 1967.

[Kry71] Y Kryukov. Turing machines with three states and two sym-
bols and with one state and n symbols. Kibernetika, 1:12–13,
1971.

[KS96] Joe Kilian and Hava Siegelmann. The dynamic universality
of sigmoidal neural networks. Information and Computation,
128(1):48–56, 1996.

[Kud96] Manfred Kudlek. Small deterministic Turing machines. Theo-
retical Computer Science, 168(2):241–255, 1996.

[LN90] Kristian Lindgren and Mats G. Nordahl. Universal compu-
tation in simple one-dimensional cellular automata. Complex
Systems, 4(3):299–318, 1990.

[LP07] Gregory Lafitte and Christophe Papazian. The fabric of small
Turing machines. In S. Barry Cooper, Thomas Kent, Benedikt
Löwe, and Andrea Sorbi, editors, Computation and Logic in
the Real World (CIE 2007), Universitá Degli Studi di Siena,
Dipartimento di Scienze Matematiche ed Informariche, Tech-
nical Report number 487, pages 219–227, Siena, Italy, June
2007. Springer.

[LR65] Shen Lin and Tibor Rado. Computer studies of Turing ma-
chine problems. Journal of the Association for Computing Ma-
chinery (ACM), 12(2):196–212, 1965.

[Mar92] Maurice Margenstern. Sur la frontière entre machines de Tur-
ing á arrêt décidable et machines de Turing universelles. Tech-
nical Report 92-83, LITP Institut Blaise Pascal, 1992.

[Mar93] Maurice Margenstern. Non-erasing Turing machines: A fron-
tier between a decidable halting problem and universality. In
Zoltán Ésik, editor, FCT, volume 710 of LNCS, pages 375–385,
Szeged, Hungry, August 1993. Springer, Heidelberg.

[Mar94] Maurice Margenstern. Une machine de Turing universelle sur
{0,1}, non-effaçante et à trois instructions gauches. Technical
Report 94-08, LITP Institut Blaise Pascal, 1994.

BIBLIOGRAPHY 130

[Mar95a] Maurice Margenstern. Non-erasing Turing machines: A new
frontier between a decidable halting problem and universal-
ity. In Ricardo A. Baeza-Yates, Patricio V. Poblete, and Eric
Goles, editors, LATIN, volume 911 of LNCS, pages 386–397,
Valparáıso, Chile, 1995. Springer, Heidelberg.

[Mar95b] Maurice Margenstern. Une machine de Turing universelle
non-effaçante à exactement trois instructions gauches. CRAS,
Paris, 320(I):101–106, 1995.

[Mar97a] Maurice Margenstern. Decidability and undecidability of the
halting problem on Turing machines, a survey. In Sergei
Adian and Anil Nerode, editors, Logical Foundations of Com-
puter Science (LFCS), volume 1234 of LNCS, pages 226–236,
Yaroslav, Russia, July 1997. Springer.

[Mar97b] Maurice Margenstern. The laterality problem for non-erasing
Turing machines on {0,1} is completely solved. Theoretical
Informatics and Applications, 31(2):159–204, 1997.

[Mar98] Maurice Margenstern. Frontier between decidability and un-
decidability: a survey. In Maurice Margenstern, editor, Ma-
chines, Computations, and Universality (MCU) volume 1,
pages 141–177, France, May 1998. IUT, Metz.

[Mar00] Maurice Margenstern. Frontier between decidability and
undecidability: a survey. Theoretical Computer Science,
231(2):217–251, 2000.

[Mar01] Maurice Margenstern. On quasi-unilateral universal Turing
machines. Theoretical Computer Science, 257(1–2):153–166,
2001.

[Mar06] Maurice Margenstern. An algorithm for building intrinsically
universal cellular automata in hyperbolic spaces. In Hamid R.
Arabnia and Mark Murgin, editors, Proceedings of the 2006
International Conference on Foundation of Computer Science,
pages 3–9, Las Vegas, Nevada, June 2006. CSREA Press.

[MB90] Heiner Marxen and Jürgen Butrock. Attacking the Busy
Beaver 5. Bulletin of the European Association for Theoretical
Computer Science, 40:247–251, 1990.

[MF05] Daniel Miller and Edward Fredkin. Two-state, reversible, uni-
versal cellular automata in three dimensions. In 2nd Confer-
ence on Computing Frontiers, pages 45–51, Ischia, Italy, 2005.
ACM Press.

BIBLIOGRAPHY 131

[MH89] Kenichi Morita and Masateru Harao. Computation universal-
ity of one-dimensional reversible (injective) cellular automata.
The Transactions of the IEICE Japan, E72(6):758–762, 1989.

[Mic93] Pascal Michel. Busy beaver competition and Collatz-like prob-
lems. Archive Mathematical Logic, 32(5):351–367, 1993.

[Mic04] Pascal Michel. Small Turing machines and the general-
ized busy beaver competition. Theoretical Computer Science,
326:45–56, 2004.

[Min60a] Marvin Minsky. A 6-symbol 7-state universal Turing machines.
Technical Report 54-G-027, Licoln Laboratory, MIT, Cam-
bridge, Massachusetts, August 1960.

[Min60b] Marvin Minsky. Recursive unsolvability of Post’s tag prob-
lem. Technical Report 54 G-023, Licoln Laboratory, MIT,
Cambridge, Massachusetts, June 1960.

[Min61] Marvin Minsky. Recursive unsolvability of Post’s problem of
tag and other topics in theory of Turing machines. Annals of
Mathematics, 74(3):437–455, 1961.

[Min62a] Marvin Minsky. Size and structure of universal Turing ma-
chines using tag systems. In Recursive Function Theory, Pro-
ceedings, Symposium in Pure Mathematics, volume 5, pages
229–238, Provelence, 1962. American Mathematical Society.

[Min62b] Marvin Minsky. Universality of (p=2) tag systems and a 4
symbol 7 state universal Turing machine, 1962. AIM-33, A.I.
memo 33, Computer Science and Artificial Intelligence Labo-
ratory, MIT, Cambridge, Massachusetts.

[Min67] Marvin Minsky. Computation, finite and infinite machines.
Prentice-Hall, Englewood Cliffs, New Jersey, 1967.

[Moo52] Edgar F. Moore. A simplified universal Turing machine. In
ACM national meeting, pages 50–54, Toronto, Canada, 1952.
ACM Press.

[Moo97a] Cristopher Moore. Majority-vote cellular automata, Ising dy-
namics, and P-completeness. Journal of Statistical Physics,
88(3-4):795–805, 1997.

[Moo97b] Cristopher Moore. Quasi-linear cellular automata. Physica D,
103:100–132, 1997.

BIBLIOGRAPHY 132

[Moo98] Cristopher Moore. Predicting non-linear cellular automata
quickly by decomposing them into linear ones. Physica D,
111:27–41, 1998.

[Mor96] Kenichi Morita. Universality of a reversible two-counter ma-
chine. Theoretical Computer Science, 168(2):303–320, Novem-
ber 1996.

[MP43] Warren McCulloch and Walter Pitts. A logical calculus of
ideas immanent in nervous activity. Bulletin of Mathematical
Biophysics, 5:115–133, 1943.

[MP95a] Maurice Margenstern and Liudmila Pavlotskaya. Deux ma-
chines de Turing universelles á au plus deux instructions
gauches. Technical Report I, CRAS, Paris, 1995.

[MP95b] Maurice Margenstern and Liudmila Pavlotskaya. Vers ue nou-
velle approche de l’universalité concernant les machines de
Turing. Technical Report 95-58, LITP Institut Blaise Pascal,
1995.

[MP03] Maurice Margenstern and Liudmila Pavlotskaya. On the opti-
mal number of instructions for universality of Turing machines
connected with a finite automaton. International Journal of
Algebra and Computation, 13(2):133–202, 2003.

[MR02] Maurice Margenstern and Yurii Rogozhin. A universal time-
varying distributed H system of degree 1. In Natasa Jonoska
and Nadrain C. Seeman, editors, DNA-7(2001), volume 2340
of LNCS, pages 371–380, Tampa, Florida, 2002. Springer.

[MSG89] Kenichi Morita, Akihiko Shirasaki, and Yoshifumi Gono. A
1-tape 2-symbol reversible Turing machine. The Transactions
of the IEICE Japan, E72(3):223–228, 1989.

[MY07] Kenichi Morita and Yoshikazu Yamaguchi. A universal re-
versible Turing machine. In Jérôme Durand-Lose and Maurice
Margenstern, editors, Machines, Computations, and Univer-
sality (MCU), volume 4664 of LNCS, pages 90–98, Orléans,
France, September 2007. Springer.

[Nea06] Turlough Neary. Small polynomial time universal Turing ma-
chines. In Ted Hurley, A. Seda, et al., editors, 4th Irish Con-
ference on the Mathematical Foundations of Computer Science
and Information Technology(MFCSIT), pages 325–329, Cork,
Ireland, August 2006.

BIBLIOGRAPHY 133

[Nea08a] Turlough Neary. On the computational complexity of spiking
neural P systems. In Unconventional Computation, 7th Inter-
national Conference, UC 2008, volume 5204 of LNCS, pages
189–205, Vienna, August 2008. Springer.

[Nea08b] Turlough Neary. A small universal spiking neural P system.
In International Workshop on Computing with Biomolecules,
pages 65–74, Vienna, August 2008. Austrian Computer Soci-
ety.

[Noz69] A. Nozaki. On the notion of universality of Turing machine.
Kybernetika Academia Praha, 5(1):29–43, 1969.

[NPRP06] Hitesh Nagda, Andrei Păun, and Alfonso Rodŕıguez-Patón.
P systems with symport/antiport and time. In Hendrik Jan
Hoogenboom, Gheorghe Păun, Grzegorz Rozenberg, and Arto
Salomaa, editors, Seventh international Workshop on Mem-
brane Computing, volume 4361 of LNCS, pages 463–476, Lei-
den, The Netherlands, 2006.

[NW] Turlough Neary and Damien Woods. Four small universal
Turing machines. Fundamenta Informaticae. (Accepted).

[NW05a] Turlough Neary and Damien Woods. A small fast universal
Turing machine. Technical Report NUIM-CS-TR-2005-12, De-
partment of Computer Science, National university of Ireland,
Maynooth, 2005.

[NW05b] Turlough Neary and Damien Woods. Small fast universal Tur-
ing machines. Technical Report NUIM-CS-TR-2005-11, De-
partment of Computer Science, National university of Ireland,
Maynooth, 2005.

[NW06a] Turlough Neary and Damien Woods. P-completeness of cel-
lular automaton Rule 110. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, International
Colloquium on Automata Languages and Programing 2006,
(ICALP) Part I, volume 4051 of LNCS, pages 132–143, Venice,
July 2006. Springer.

[NW06b] Turlough Neary and Damien Woods. P-completeness of cel-
lular automaton Rule 110. Technical Report 04/2006, Boole
Centre for Research in Informatics, University College Cork,
Ireland, 2006.

[NW06c] Turlough Neary and Damien Woods. Small fast universal Tur-
ing machines. Theoretical Computer Science, 362(1–3):171–
195, October 2006.

BIBLIOGRAPHY 134

[NW07a] Turlough Neary and Damien Woods. Four small universal
Turing machines. In Jérôme Durand-Lose and Maurice Mar-
genstern, editors, Machines, Computations, and Universal-
ity (MCU), volume 4664 of LNCS, pages 242–254, Orléans,
France, September 2007. Springer.

[NW07b] Turlough Neary and Damien Woods. Small weakly universal
Turing machines. Technical Report arXiv:0707.4489v1 [cs.CC],
July 2007.

[Oll02] Nicolas Ollinger. The quest for small universal cellular au-
tomata. In Peter Widmayer et al., editor, International Collo-
quium on Automata, Languages and Programming (ICALP),
volume 2380 of LNCS, pages 318–329, Malaga, Spain, July
2002. Springer.

[Ott75a] Thomas Ottmann. Eine universelle Turingmaschine mit zwei-
dimensionalem band. Elektronische Informationsverarbeitung
und Kybernetik, 11(1-2):27–38, 1975. (In German).

[Ott75b] Thomas Ottmann. Einfache universelle mehrdimensionale
Turingmaschinen. Habilitationsschrift, Karlsruhe, 1975.

[Pap95] Christos Papadimitriou. Computational complexity. Addison-
Wesley, 1995.

[Pău00] Gheorghe Păun. Computing with membranes. Journal of
Computer and System Sciences, 61(1):108–143, 2000.

[Pău02] Gheorghe Păun. Membrane Computing: An Introduction.
Springer, 2002.

[Pav73] Liudmila Pavlotskaya. Solvability of the halting problem
for certain classes of Turing machines. Mathematical Notes
(Springer), 13(6):537–541, June 1973. (Translated from
Matematicheskie Zametki, Vol. 13, No. 6, pages 899–909, June,
1973.).

[Pav75] Liudmila Pavlotskaya. O minimal’nom chisle razlichnykh
kodov vershin v grafe universal’noj mashiny T’juringa. Disket-
nyj analiz, Sbornik trudov instituta matematiki SO AN SSSR,
27:52–60, 1975. (On the minimal number of distinct codes for
the vertices of the graph of a universal Turing machine. In
Russian).

[Pav78] Liudmila Pavlotskaya. Dostatochnye uslovija razreshimosti
problemy ostanovki dlja mashin T’juring. Problemi Kiber-

BIBLIOGRAPHY 135

netiki, 27:91–118, 1978. (Sufficient conditions for the halting
problem decidability of Turing machines. In Russian).

[Pav96] Liudmila Pavlotskaya. On machines, universal by extensions.
Theoretical Computer Science, 168(2):257–266, 1996.

[Pav02] Liudmila Pavlotskaya. Turing machines connected to the
undecidability of the halting problem. Mathematical Notes,
71(5):667–675, 2002.

[Pol87] J Pollack. On connectionist models of natural language process-
ing. PhD thesis, Computer Science Department, University of
Illinois, Urbana, 1987.

[Pos36] Emil Post. Finite combinatory processes. formulation I. The
Journal of Symbolic Logic, 1(3):103–105, sep 1936. (Also to be
found in [Dav65] pages 289–291).

[Pos43] Emil Post. Formal reductions of the general combinatorial de-
cision problem. American Journal of Mathmatics, 65(2):197–
215, April 1943.

[Pos47] Emil Post. Recursive unsolvability of a problem of Thue. The
Journal of Symbolic Logic, 12(1):1–11, March 1947. (Also to
be found in [Dav65] pages 293–303).

[Pos65] Emil Post. Absolutely unsolvable problems and relatively un-
decidable propositions - account of an anticipation. In Martin
Davis, editor, The undecidable: basic papers on undecidable
propositions, unsolvable problems and computable functions,
pages 340–406. Raven Press, New York, 1965.

[PP07] Andrei Păun and Gheorghe Păun. Small universal spiking
neural P systems. BioSystems, 90(1):48–60, 2007.

[Pri79] Lutz Priese. Towards a precise characterization of the com-
plexity of universal and non-universal Turing machines. Siam
journal of Computing, 8(4):508–523, November 1979.

[PRS98] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa.
DNA Computing: New Computing Paradigms. Springer, 1998.

[Rad62] Tibor Rado. On non-computable functions. The Bell Systems
Technical Journal, 41(3):877–884, 1962.

[Ric06] Gaétan Richard. A particular universal cellular automa-
ton. HAL research report (oai:hal.archives-ouvertes.fr:hal-
00095821 v1), September 2006.

BIBLIOGRAPHY 136

[Rob71] Raphael Robinson. Undecidability and nonperiodicity for
tilings of the plane. Inventiones Mathematicae, 12(3):177–209,
1971.

[Rob91] Raphael Robinson. Minsky’s small universal Turing machine.
International Journal of Mathematics, 2(5):551–562, 1991.

[Rog79] Yurii Rogozhin. Sem’ universal’nykh mashin T’juringa. In
Fifth all union conference on Mathematical Logic, Akad. Naul
SSSR. Otdel. Inst. Mat., Novosibirsk, page 27, 1979. (Seven
universal Turing machines. In Russian).

[Rog82] Yurii Rogozhin. Sem’ universal’nykh mashin T’juringa. Sys-
tems and theoretical programming, Matematicheskie Issle-
dovanija, 69:76–90, 1982. (Seven universal Turing machines.
In Russian).

[Rog92] Yurii Rogozhin. Universal’naja mashina T’juringa s 10 sos-
tojanijami i 3 simvolami. Izvestiya Akademii Nauk Respubliki
Moldova, Matematika, 4(10):80–82, 1992. (A universal Turing
machine with 10 states and 3 symbols. In Russian).

[Rog93] Yurii Rogozhin. About Shannon’s problem for Turing ma-
chines. Computer Science Journal of Moldova, 1(3):108–111,
1993.

[Rog96] Yurii Rogozhin. Small universal Turing machines. Theoretical
Computer Science, 168(2):215–240, 1996.

[Rog98] Yurii Rogozhin. A universal Turing machine with 22 states
and 2 symbols. Romanian Journal of Information Science and
Technology, 1(3):259–265, 1998. (In Russian).

[RV06] Yurii Rogozhin and Sergey Verlan. On the rule complexity
of universal tissue P systems. In Rudolf Freund, Georg Lo-
jka, Marion Oswald, and Gheorghe Păun, editors, Sixth inter-
national Workshop on Membrane Computing(2005), volume
3850 of LNCS, pages 356–362, Vienna, July 2006. Springer,
Heidelberg.

[Sha56] Claude Elwood Shannon. A universal Turing machine with
two internal states. Automata Studies, Annals of Mathematics
Studies, 34:157–165, 1956.

[Sie98] Hava Siegelmann. Neural networks and analog computation:
beyond the Turing limit. Birkhauser, Boston, 1998.

BIBLIOGRAPHY 137

[Sip97] Micheal Sipser. Introduction to the theory of computation.
PWS, Boston, 1997.

[SM99] Halva Siegelmann and Maurice Margenstern. Nine switch-
affine neurons suffice for Turing universality. Neural Networks,
12(4-5):593–600, 1999.

[Smi71] Alvy Smith III. Simple computation-universal cellular spaces.
Journal of the Association for Computing Machinery (ACM),
18(3):339–353, July 1971.

[SS91] Hava Siegelmann and Eduardo Sontag. Turing computability
with neural nets. Applied Mathematics Letters, 4(6):77–80,
1991.

[SS95] Hava Siegelmann and Eduardo Sontag. On the computational
power of neural nets. Journal of Computer and System Sci-
ences, 50(1):132–150, 1995.

[Sut03] K Sutner. Almost periodic configurations on linear cellular
automata. Fundamenta Informaticae, 58(3-4):223–240, 2003.

[Tak58] H Takahashi. Keisankikai II. Iwanami, Tokyo, 1958. (Com-
puting machine II. In Japanese.).

[Tof77] Tommaso Toffoli. Computation and construction universal-
ity of reversible cellular automata. Journal of Computer and
Systems Science, 15(2):213–231, 1977.

[Tur37] Alan Turing. On computable numbers with application to the
entscheidungsproblem. Proceedings of the London Mathemat-
ical Society, 42:230–265, 1937. (Also to be found in [Dav65]
pages 116–154).

[vEB90] Peter van Emde Boas. Machine models and simulations. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer
Science: Volume A, pages 1–66. Elsevier, 1990.

[vN66] John von Neumann. The theory of self-reproducing automata.
University of Illinois Press, Urbana, 1966.

[Wag73] Klaus Wagner. Universelle Turingmaschinen mit n-
dimensionale band. Elektronische Informationsverarbeitung
und Kybernetik, 9(7-8):423–431, 1973.

[Wan57] Hao Wang. A variant to Turing’s theory of computing ma-
chines. Journal of the Association for Computing Machinery
(ACM), 4(1):63–92, January 1957.

BIBLIOGRAPHY 138

[Wan63] Hao Wang. Tag systems and lag systems. Mathematical An-
nals, 152(4):65–74, 1963.

[Wat60] Shigeru Watanabe. On a minimal universal Turing machine.
Technical report, MCB Report, Tokyo, August 1960.

[Wat61] Shigeru Watanabe. 5-symbol 8-state and 5-symbol 6-state uni-
versal Turing machines. Journal of the Association for Com-
puting Machinery (ACM), 8(4):476–483, 1961.

[Wat72] Shigeru Watanabe. Four-symbol five-state universal Turing
machine. Information Processing Society of Japan Magazine,
13(9):588–592, September 1972. (In Japanese).

[WNa] Damien Woods and Turlough Neary. The complexity of small
universal Turing machines: A survey. Theoretical Computer
Science. (Accepted).

[WNb] Damien Woods and Turlough Neary. Small semi-weakly uni-
versal Turing machines. Fundamenta Informaticae. (Ac-
cepted).

[WN06a] Damien Woods and Turlough Neary. On the time complexity
of 2-tag systems and small universal Turing machines. In 47th

Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 439–446, Berkeley, California, October
2006. IEEE.

[WN06b] Damien Woods and Turlough Neary. On the time complexity
of 2-tag systems and small universal Turing machines. Tech-
nical Report arXiv:cs/0612089v1 [cs.CC], December 2006.

[WN06c] Damien Woods and Turlough Neary. Remarks on the com-
putational complexity of small universal Turing machines. In
Ted Hurley, A. Seda, et al., editors, Fourth Irish Conference
on the Mathematical Foundations of Computer Science and
Information Technology(MFCSIT), pages 334–338, Cork, Ire-
land, August 2006.

[WN07a] Damien Woods and Turlough Neary. The complexity of small
universal Turing machines. In S. Barry Cooper, Benedikt
Löwe, and Andrea Sorbi, editors, Computation and Logic in
the Real World, Third Conference on Computability in Europe,
CIE 2007, volume 4497 of LNCS, pages 791–799, Siena, Italy,
June 2007. Springer.

BIBLIOGRAPHY 139

[WN07b] Damien Woods and Turlough Neary. Small semi-weakly uni-
versal Turing machines. In Jérôme Durand-Lose and Maurice
Margenstern, editors, Machines, Computations, and Univer-
sality (MCU), volume 4664 of LNCS, pages 303–315, Orléans,
France, September 2007. Springer.

[Wol83] Stephen Wolfram. Statistical mechanics of cellular automata.
Reviews of Modern Physics, 55(3):601–644, July 1983.

[Wol02] Stephen Wolfram. A new kind of science. Wolfram Media,
2002.

[ZZP] Xingyi Zhang, Xiangxiang Zeng, and Linqiang Pan. Smaller
universal spiking neural P systems. In submission.

